AFRL-IF-RS-TR-2001-18
Final Technical Report
February 2001

COMPILING SCIENTIFIC PROGRAMS FOR
SCALABLE PARALLEL SYSTEMS

Rice Universtiy

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D515

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

20010507 07"

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
- Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-TF-RS-TR-2001-18 has been reviewed and is approved for publication.

APPROVED:

Do S gy

QGEPH" A. CARozzc»szz’
o

ject Engineer

FOR THE DIRECTOR: %«(=2 %o

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

COMPILING SCIENTIFIC PROGRAMS FOR
SCALABLE PARALLEL SYSTEMS

Ken Kennedy, John Mellor-Crummey,
Vikram Adve, Robert J. Fowler,
And Guohua Jin

Contractor: Rice University

Contract Number: F30602-96-1-0159

Effective Date of Contract: 1 June 1996

Contract Expiration Date: 31 May 1999

Program Code Number: C276

Short Title of Work: Compiling Scientific Programs for
Scalable Parallel Systems

Period of Work Covered: Jun 96 - May 99

Principal Investigator: John Mellor-Crummey
Phone: (713) 527-4820
AFRL Project Engineer: Joseph A. Carozzoni
Phone: (315) 330-7796

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Joseph A. Carozzoni, AFRL/IFTB, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

2. REPORT DATE
FEBRUARY 2001

1. AGENCY USE ONLY /Leave blank)

3. REPORT TYPE AND DATES COVERED
Final Jun 96 - May 99

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the tima for reviewing instructions, searching existing data sourcas, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of infermation, including suggestions for reducing this burden, to Washingten Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Otfice of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503.

4. TITLE AND SUBTITLE
COMPILING SCIENTIFIC PROGRAMS FOR SCALABLE PARALLEL SYSTEMS

and Guohua Jin

5. FUNDING NUMBERS
C - F30602-96-1-0159

PE - 62301E

PR - C322
8. AUTHOR(S) TA - 00
Ken Kennedy, John Mellor-Crummey, Vikram Adve, Robert J. Fowler, WU - 02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES)
Rice University

P.O. Box 1892 - MS 16

Houston TX 77251-1892

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

0. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTB
3701 N. Fairfax Drive 525 Brooks Road

Arlington VA 22203 Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-18

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Joseph A. Carozzoni/IFTB/(315) 330-7796

12a. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words)

This report details research into compiler technology to support machine-independent data parallel programming for scientifig
application. The investigation focused on design and development of dHPF, an advanced prototype compiler for High
Performance FORTRAN (HPF). The research performed in this project included new techniques for recognizing implicit
parallelism in sequential programs, a powerful and precise set-based framework for analysis and transformation of
data-parallel programs, support for sophisticated data and computation partitioning, effective support for generation and
optimization of parallel code for message-passing and distribution shared-memory systems; techniques for supporting
sophisticated data-paralle! applications with irregular structure, and an integrated compiled effort that included a multi-level
memory hierarchy simulator and techniques for improving locality in irregular computations.

14. SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

Data Parallel Programming, High-Performance FORTRAN, Memory Hierarchy Simulator 88
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

UL

Standard Form 298 gRev. 2-89) (EG)
Prescribed by ANS! Std, 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Contents
1 Introduction
2 Approach

3 Accomplishments
3.1 Detection of Implicit Parallelism
3.2 Computation Partitioning Model oo
3.3 An Integer Set Framework for Program Analysis and Optimization
3.3.1 Description of the Set Framework for Data-Parallel Compilation
3.3.2 Optimizations using the Integer Set Framework
3.3.3 Extensions for Symbolic Distribution Parameters
3.3.4 An Optimized Virtual Processor Model
3.3.5 Code Generation using Virtual Processors
3.4 Computation Partitioning Optimizations oo
3.4.1 Computation Partitioning for Reductions
3.4.2 Parallelizing Computations that use Privatizable Arrays
3.4.3 Partial Replication of Computation
3.5 Code Generation for General Computation Partitions
3.5.1 Realizing Computation Partitions
3.5.2 Constraint Propagation and Control Flow Simplification
3.6 Experimental Evaluation of dHPF Compilation Techniques C e
3.6.1 Compiler Performance« i e
3.6.2 Performance of dHPF-generated code

3.6.3 S . e e e e e e e e e e e
3.6.4 BT . . e e e e e e e e
3.7 Compiler-Support for Advanced Partitionings
3.7.1 Multipartitioning in dHPFo oo

3.7.2 Evaluation of Compiler-Support for Multipartitioning
3.8 Using Data-Parallel Languages for Irregular Applications
3.8.1 Hierarchical Methods« . o
3.9 Implementation Comparison v o oo e
3.9.1 The Hand-coded Implementation
3.9.2 The HPF Implementationo

3.9.3 [Initial HPF vs. MPI Performance« i v v v,
3.9.4 Rationale for Performance Differences o oo
3.9.5 Improving HPF Performance

3.9.6 DiscusSION . + .« v v v i e e e e e e e e e e e e e e
3.10 Compiler and Run-time Support for Software Distributed Shared-Memory
3.10.1 Effectiveness of Integrated Compiler and Run-time Optimizations.
3.11 Integrated Compiler Support for Tools
3.12 Other Accomplishments o e
3.13 Evaluation of Accomplishments o o oo

4 Project Publications

5 Personnel 63

5.1 Faculty, 63
5.2 Research Staff., 63
5.3 Graduate Students, 64
5.4 Undergraduate Students 64
6 Interactions 65
6.1 Conference Presentations 65

ii

List of Figures

N

~N O O W

10
11
12
13
14
15

16
17
18

19
20

Primitive sets and mappings for compiling data-parallel programs. 9
Construction of primitive sets and mappings for an example program. (Aligny,
Aligng, and Distt also include constraints for the array and template ranges, but

these have been omitted here for brevity.) 9
Equations for computing communication sets, 10
Loop splitting to overlap communication and computation. 14
Active virtual processors for computing, sending and receiving 15
Code generation for SEND with optimized virtual processor model 16
Computation partitioning for a loop nest from subroutine 1hsy of the NAS SP com-

putational fluid dynamics benchmark. 19
Using LOCALIZE to partially replicate computation in subroutine compute._rhs

from NAS SP. e e e e e e 22
Constructing a code template from iteration spaces. 24
Example showing iteration sets constructed for code generation.. 24
HPF source fragment abstracted from the Erlebacher benchmark. 25
Skeletal SPMD code for Fig. 11 with partitioned computation. 25
Skeletal SPMD code for Fig. 12 after simplification. 30
Space-time diagram of hand-coded MPI for SP (16 processors). 37
Space-time diagrarﬁ of dHPF-generated MPI for NAS SP application benchmark (16

PTOCESSOIS). it v v v v v e v e et et e e e e e e e e e e e e e e e e e 37
Space-time diagram of hand-coded MPI for NAS BT application benchmark (16

PLOCESSOTS). & v v v e v e 39
Space-time diagram of dHPF-generated MPI for NAS BT application benchmark

(16 PIOCESSOTS). « v v v v v v e et i e e e et e e e e e e e e e e e e e 40
3D Multipartitioning on 16 processors. v v v i i e e e e 41
dHPF-generated NAS SP using 3D multipartitioning. 44

Speedups for MPI hand-coded multipartitioning and dHPF-generated multiparti-
tioning versions of NAS SP benchmark (class A). 44

iii

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:

List of Tables

Breakdown of dHPF compilation time

Comparison between hand-written MPI, dHPF and pgppg for SP
Comparison between hand-written MPI vs. dHPF and PGI

Ratio of performance metrics for single-processor executions
Key for row heading abbreviations in performance tables
NAS-BT class A 16 columnwise computation partitioning
NAS-BT class A 4x4 computation partitioning.

iv

33
36
39
45
56
56
57

1 Introduction

Since the inception of scalable parallel computation, the critical impediment to widespread accep-
tance has been the absence of a high-level programming model for development of applications that
can run with high performance across the entire spectrum of parallel architectures. Fully automatic
parallelization has failed to materialize for configurations beyond small-scale shared-memory pro-
cessors. Distributed shared memory, while promising, has not yet been able to deliver scalable
performance on the full spectrum of machine configurations and applications. Currently, the most
common approach to portable parallelization is the use of a standard message-passing library, such
as MPI. This is common even for programs developed on hardware distributed shared memory
systems. Unfortunately, the message-passing programming model puts an enormous burden on the
application developer, who must not only design the parallelization strategy but must handle the
details of communication and memory management. If no higher-level programming interface is
successful, the limitations of message-passing are likely to inhibit the widespread use of scalable
parallelism, a technology that is critical to the defense enterprise as well as to the solution of major
national problems in science, engineering, and commerce.

High Performance Fortran (HPF) [Hig93, KLSt94], developed in the first half of this decade
represents an attempt to harness the power of automatic parallelization technology to provide a
commercially-viable high level programming model for developing fully portable programs. HPF
provides an attractive model for parallel programming because of its relative simplicity. Principally,
programmers write a single-threaded Fortran program and use data layout directives to map data
elements onto an array of processors. HPF compilers use these directives to partition a program’s
computation among processors, and to synthesize necessary data movement and synchronization.
As of 1997, fifteen companies were offering HPF compilers, including all major parallel computer
vendors, and nearly forty major applications had been developed in the language, some over 100,000
lines. In addition, several of the DOD Modernization CHESSI efforts planned to use HPF in their
applications.

Although there was initally considerable enthusiasm for HPF, it failed to achieve widespread
acceptance by scientists as the model of choice for developing parallel applications. The success of
HPF has been principally limited by the shortcomings of its compilers which were adapted from
technology for automatic parallelizers of the late 80s and early 90s. This technology has just not
been sophisticated enough to deliver scalable performance across a variety of architectures and
applications. Compilation techniques in use by commercial HPF compilers fail to generate code
that achieves performance competitive with that of hand-coded programs for typical applications.
As a result, many applications developers have been reluctant to use HPF, choosing to suffer the
burdens of message-passing instead. Other developers have simply delayed the transition to scalable
parallelism.

Second, it is difficult for developers to use HPF compilers to parallelize existing codes. Commer-
cial HPF compilers lack analysis and code generation capabilities to effectively parallelize a wide
range of loops written in a Fortran 77 style. Therefore, for codes to achieve reasonable parallelism
when compiled with commercial HPF compilers, they need to be rewritten substantially.

Third, the acceptance of HPF has been hampered by its lack of support for irregular, adaptive
codes that dominate many fields of scientific computation, such as engineering design. Although
the HPF Forum added support for irregular mappings to the language, no commercial compiler
has supported this critical feature. Furthermore, even earlier research compilers have been unable
to integrate support for irregular and regular meshes in a manner that was robust enough for real
applications.

Finally, developers have been slow to adopt HPF because of the lack of programming tools

that enable programmers to develop, debug and tune their programs entirely at the source level.
Since HPF compilers perform radical program transformations, effective tools for working with
HPF programs require extensive compiler support.

The goal of this project was to overcome those difficulties by developing a whole new generation
of technologies that are powerful enough to eliminate the previous shortcomings of HPF compilers
and yet practical enough to be used in commercial products.

2 Approach

The project’s research focused on developing compiler technology for High Performance Fortran
(HPF). The project’s investigation of compiler technology to support data-parallel programming
centered around the design and development of dHPF, an advanced prototype compiler for High
Performance Fortran.

A principal focus of the dHPF compiler research was on compiler support for data and com-
putation partitioning. The strategy used to partition an application’s data and computation plays
a critical role in determining the application’s performance. The partitioning used determines the
application’s possible parallelizations, which in turn determines the maximum attainable parallel
efficiency. To support effective parallelization of a broader class of computations with dHPF, we
developed a new computation partitioning framework that enables processors to compute values
for any data, independent of whether or not the data is mapped to that processor. This framework
supports a much more general class of partitionings than current commercial or other research
compilers. Also, the framework provides the capability to experiment with different algorithms for
selecting computation partitionings.

Supporting these more general partitionings required new techniques for communication anal-
ysis and code generation. To make communication analysis and code generation for our general
computation partitioning model tractable, as well as support advanced optimizations, a high-level
abstract model is necessary. Accordingly, we designed the dHPF compiler around a powerful
integer-set framework that performs communication analysis and code generation by manipulating
sets of and mappings between integer tuples that represent data elements, iterations, and proces-
sors. This set framework enables advanced optimizations to be expressed simply and concisely,
yet generally, in terms of set equations. Used in conjunction with data dependence analysis, this
framework provides a basis for determining precisely what values need to be communicated, and
reasoning about closed-form representations of these communication sets. Manipulation of these
communication sets and iteration spaces enables sophisticated optimizations such as loop split-
ting to overlap communication and computation, and communication blocking strategies such as
coarse-grain pipelining, which sacrifices potential parallelism to reduce communication overhead by
increasing communication granularity.

An important goal in the design of the of the dHPF compiler was to develop analysis algorithms
that are abstract and machine-independent, so that a single compiler framework can serve all
platforms, and any optimization can be applied to any architecture (where profitable).

The project research also aimed to abstract the notion of distribution so that a single con-
cept can handle both regular and irregular mappings, and standard compiler optimizations for
static computation partitioning, communication vectorization, and latency hiding can be applied
to irregular as well as regular applications.

Finally, a component of the dHPF project was to develop new compiler technology to support
source-level programming tools. The project has developed techniques to track compiler transfor-
mations, describe them to programmers, and relate measured performance information back to the

source program. During compilation, dHPF automatically records program transformations both
in terms of detailed low-level changes and in terms of higher-level, semantically meaningful trans-
formations. These are kept in a program database along with detailed compiler analysis results and
optimization decisions. This information repository provides a basis for constructing programming
tools that provide detailed source-level feedback to programmers.

3 Accomplishments

The principal accomplishment of this project has been the development of compiler analysis and
code generation technology to help machine-independent, data-parallel programs to achieve high
performance on a range of scalable parallel architectures for a broad spectrum of scientific applica-
tions. In the following sections, we provide a brief overview of our key technical accomplishments.

3.1 Detection of Implicit Parallelism

One can parallelize an application written in sequential Fortran simply by adding HPF directives to
the program and leaving it to an optimizing compiler to analyze, understand and exploit parallelism
inherent in the program. However, for this approach to be broadly effective for scientific programs,
HPF compilers must be able to effectively parallelize loops with carried data dependences (simply,
this means loops that update values that are later used in subsequent iterations).

A particularly important class of loops that carry data dependences are those that compute
reductions. A reduction is a commutative and associative operation that maps an array of n
dimensions to an array of m dimensions, where 0 < m < n'. Reduction operations appear in many
contexts including kernels for matrix multiplication, image processing, computational geometry
algorithms, sorting, and are commonly used to test for convergence of iterative algorithms.

When compiling programs in which reductions are coded implicitly, an optimizing compiler
without explicit support for reduction recognition will naively classify reductions as sequential
operations. This happens because data dependence analysis will identify the reduction’s repeated
updates of the same location as an obstacle to parallel execution. If implicit reductions are not
recognized and parallelized, they can dramatically degrade parallel program performance. However,
reduction computations can be parallelized since commutative updates to an accumulator can be
reordered safely.

Reduction computations can be optimized effectively for a variety of architectures. On MIMD
parallel computers, a reduction can be computed efficiently by having each processor (in parallel)
compute a partial reduction result and then combining these partial results into a final result by
using one or more collective communication operations. In this manner, a parallel reduction of n
data elements into m data elements on p processors can be computed in time O(n/p + mlogp)
(assuming that the data is evenly distributed). To generate reduction code that achieves high
performance on distributed-memory machines, it is important minimize communication which can
be costly on such systems. '

Reduction recognition in the dHPF compiler grew out of earlier work in PFC [Dar86], which
recognized implicit SUM and PRODUCT reduction$ to convert them into equivalent explicit FOR-
TRAN 90 intrinsic calls. For the dHPF compiler, we extended this work to handle more general
forms of suM and PRODUCT reductions, developed support for recognition of MIN, MAX, MINLOC,
and MAXLOC reductions, and developed code generation support for distributed memory machines.

!An array of zero dimensions represents a scalar value.

Our new approach to recognizing reductions recognizes a variety of multi-level reductions in-
termixed with other computation. We use a combination of control and data dependence analysis
along with pattern matching to recognize reductions at multiple levels inside imperfectly nested
loop nests that may contain conditional control flow. Our experiments show that our strategy is
effective and exceeds the capabilities of other compilers.

Here we briefly describe how dHPF recognizes SUM, PRODUCT, MIN, MAX, MINLOC and MAXLOC
reduction patterns. There are two phases to reduction recognition. First, for each assignment
statement, we check if it is reducible and if so, classify its reduction type. Second, we gather
related reduction statements into groups. For each group, we check if it is a reducible group (for
example, all the statements in the group must have the same reduction type), and decide the levels
that the reduction can be carried on.

Single Statement Reductions To identify whether an assignment statement is part of a re-
duction computation, we use four program representations: an abstract syntax tree (AST), a data
dependence graph [KA97], static single assignment (ssa) form [CFR*91] and a control dependence
graph [CFR*91]. We first identify assignment statements with incident true, anti and output data
dependences as reduction candidates. Next, we use SSA to locate definitions of the right hand side
variables and use the AST to inspect the operations on right hand side variables in reduction candi-
dates. For extreme value reductions formed by MIN, MAX, MINLOC, or MAXLOC operations, we use
control dependence information to find a control dependence predecessor and compare the control
statement with the dependent statements to determine if they form an extreme value reduction.
The use of control dependence information distinguishes our method from others, and enables us
to recognize extreme value reductions using various control flow structures.

Reduction Groups For suM or PRODUCT reductions, a reduction group is formed by reduction
statements with the same left hand side accumulator and same reduction operator. For example,
in the following code fragment

do i = 1b, udb

T=T+ Y(i)
T=T+ Z(i, n)
enddo

both of the assignments to T belong to the same suM reduction group with the accumulator of T.
For MIN/MAX reductions, a reduction group is formed by the assignment statement that records
the extreme value along with any assignment statements that record the position of the extreme
value.

All statements in a reduction group use the same storage for accumulating the local reduction
results (a local accumulator for T in the example above), and use a single collective communication
operation to compute the global results. Our approach differs from the reduction handling in the
IBM HPF compiler [SKN96]. They first generate a separate communication event for each reduction
statement, and then apply reduction coalescing and aggregation to merge communication operations
where possible. By forming a reduction group and generating one communication event for each
group, we avoid the need for communication coalescing in most cases.

For any pair of statements to be members of the same reduction group, their common accu-
mulator must not be modified or referenced by non-reduction statements at their deepest common
loop level.

Reduction Levels The dHPF compiler recognizes multi-level reduction groups. Statementsin a
reduction group need not all be at the same loop nesting level. We use the data dependence graph
to detect modifications and references to a reduction accumulator by non-reduction statements to
decide how many loop levels can participate in a reduction. For example, the following loop nest

=1, ubil
51) = $+9
Ss S = S+B(k)
do i =1, ub2
Gy S = S+C(1)
do j = 1, upb3

do k
Qck

G S = S+E(j)
enddo
Gy S = S+D(i)
enddo
enddo

contains one reduction group G that contains the statements as labeled. Since Si, a non-reduction
statement, references the value of S at the same loop level as reduction candidate S, So cannot be
a member of any reduction group. However, since the intermediate values of S are not referenced
by a non-reduction candidate inside the i or j loops, all of the statements marked G are collected
into the same reduction group. The reduction for these inner two loops can be computed in parallel
to provide the value of S used by S;. We say group G is reducible in the inner two loops.

Building Reduction Groups To build reduction groups, we perform the following steps:
1. Build reduction groups for statements directly inside a loop.

(a) Identify assignment statements that meet the criteria for being a reduction candidate.
Classify the type of the reduction by examining the contributing operators and the
control dependences.

(b) For each set of reduction candidates that have the same accumulator and reduction type,
collect them into a reduction group as long as any other uses or modifications of the
accumulator occur outside the innermost loop level at which the reduction dependences
are carried.

2. Merge reduction groups at different loop levels. If there are two reduction groups, G at level
m and Gy at level n, where m < n, merge G; and G5 if they have the same accumulator and
reduction type and no non-reduction candidate accesses the accumulator at levels m through
n, inclusive. Otherwise, if the reduction accumulator is accessed at level k, where m < k < n,
group (1 in the outer loop is not reducible and we cannot merge the two groups.

To compute whether groups can be merged, for each reduction group G at level m:

(a) Search all of the dependences of the accumulation variable of G to find other statements
that reference or modify it. If one such statement is in another reduction group G2 which
has the same accumulator and reduction operator and it is at some level £ > m, we say
G, and G5 are compatible and mark G, as a candidate group to be merged with G,
later. If the statement is not in another compatible reduction group, and it is at some
level £ > m, mark G; as “not reducible”.

(b) If Gy is not marked as “not reducible”, merge Gy with all the compatible reduction
groups at levels k > m (such as G in the above example).

(c) Decide the outermost level at which the reduction can be performed based on the de-
pendences checked in step 2a.

Idioms Recognized The algorithms described above can recognize a broad range of reduction
operations. Here we provide a brief enumeration of the reduction features that dHPF can recognize.

o Scalar reductions which accumulate the results into a scalar variable.

e Multi-element array reductions which accumulate reduction results into one or more elements
in an array.

e Reduction groups that may contain multiple reduction statements (each of which may be at
a different loop nesting level) sharing the same accumulator.

e Reduction operations that are control dependent on conditionals such as
if o then s = s * a(i)
can form a reduction group with other statements outside the control statement.

e MIN/MAX and MINLOC/MAXLOC reductions using different forms of if structures. Absolute
value operations are fully supported for MIN/MAX or MINLOC/MAXLOC operations, such as
those that occur in the SPEC92 TOMCATV benchmark program.

e Reductions closely intermixed with other computations. For example, dHPF can recognize
reductions that use arrays or privatizable variables which are defined previously in the same
loop; other compilers require that reduction operations be isolated from other computations
and that their operands be prefetchable [SKN96].

3.2 Computation Partitioning Model

A computation partitioning (CP) for a statement specifies which processor(s) must execute each
dynamic instance of the statement. To support effective parallelization of a broad class of computa-
tions, we developed a new computation partitioning framework for dHPF that enables processors to
compute values for any data, independent of whether or not the data is mapped to that processor.
Within dHPF, this enables us to choose an appropriate partitioning well-suited to an application’s
needs with the aim of maximizing parallelizm and minimizing communication. In this section, we
briefly describe the computation partitioning model supported by dHPF.

Research and commercial HPF compilers primarily use the owner-computes rule [RP89] to assign
CPs to statements. This rule specifies that a computation is executed by the owner of the value
being computed. This rule, as well as other variants used in some compilers (e.g., decHPF [HBB+95]
and SUIF [AL93]) can be expressed in terms of the processor(s) that own a particular set of data
elements. In particular, for a statement enclosed in a loop nest with index vector i, and for some
variable A, the CP onhome{A(f(3))}, specifies that the dynamic instance of the statement in
iteration z will be executed by the processor(s) that own the array element(s) A(f(z)). This set of
processors is uniquely specified by subscript vector f(i) and the layout of array A at that point in
the execution of the program. The SUIF compiler [AL93] further restricts all statements in a loop
to have the same computation partition. The dHPF compiler supports a more general CP model in
which a CP for a statement can be specified as the owner of one or more arbitrary data references,
and each statement in a program may have its own CP. A statement’s CP is specified by a union
of one or more on_home terms: C'P : U}_Ton home{A;(f;(2))}. This implicit representation of a

computation partitioning in dHPF supports arbitrary index expressions or any set of values in each
index position in f;(z).

We convert the implicit CP form into an explicit integer tuple mapping, CPMap. This is
possible when each subscript expression in f;(i) is an affine expression of the index variables, i,
with known constant coefficients, or is a strided range specifiable by a triplet (b:ub:step with known
constant step. The overall mapping is a union of mappings for the individual on_home terms:

j=n

CPMap = U (Layouta; o Refj_l) ﬂ loop

range
i=1 &

Here, the mapping for a single term on_home{A;(f;(2))} is a composition of the layout and reference
mappings, restricted in range to the loop index space. CPMap explicitly specifies the processor
assignment for the instance of a statement in loop iteration g.

When using such a general computation partitioning model that enables each statement to
specify which processors need to participate in its execution, control flow statements require careful
handling to ensure that each statement is reached by all of the processors that need to execute it.
A valid computation partitioning is achieved through a sequence of steps. First, dHPF selects a
computation partitioning (CP) for each assignment statement, except for assignments to privatizable
variables. For each such statement, the CP is generally chosen to be ON_HOME of one of the references
in the statement. Second, each statement’s CP is propagated to definitions of privatizable variables
used in that statement to ensure necessary values are available. Finally, to ensure that each
processor will reach each statement whose instances it must execute (in the presence of arbitrary
conditional control flow), a propagation phase is used to establish the following invariants: (1) each
control flow statement is assigned the union of the cPs of the statements that are control dependent
on them, and (2) each branch target is assigned a computation partitioning that is a superset of
the partitionings assigned to each of its control flow predecessors. These invariants ensure that all
processors that need to reach a statement can and do.

3.3 An Integer Set Framework for Program Analysis and Optimization

The previous sections described the general computation partitioning (CP) framework in the dHPF
compiler, and its use in implementing a number of powerful computation partitioning optimiza-
tions. One of the major challenges in supporting such a general framework is the analysis required
to support communication analysis and communication optimization, which must take CPs into
account explicitly. More generally, the analysis and code generation techniques used to perform
communication optimizations are a key determinant of the performance of the generated parallel
code.

Most research and commercial data-parallel compilers to date [LC91, BCZ92, KM91, SOG4,
HKT93, GB92, GMS*95, HBB*95, BMNt95, GKHS96, vDSP96, ZBG88] perform communica-
tion analysis and code generation by considering specific combinations of the form of references,
data layouts and computation partitionings. Such case-based analysis has been the principal im-
plementation technique for data-parallel compilation systems because it provides a practical and
conceptually simple strategy for developing compilers, and it can be relied on to yield excellent
performance for common cases. The case-based approach, however, provides poor performance for
cases that have not been explicitly considered. Perhaps more significantly, such case-based compil-
ers require a relatively high development cost for each new optimization because the analysis and
code generation for each case is handled separately. This makes it difficult to achieve wide coverage
with optimizations to offer consistently high performance.

A few researchers have used analysis techniques based on linear inequalities, which enable a
more general and flexible approach than case-based analysis for implementing data parallel lan-
guages [ACIK93, BCG195, AL93]. This work has focused on computing local communication and
iteration sets, and performing code generation from these sets using Fourier-Motzkin elimination
(FME) [AI91]. Amarasinghe and Lam [AL93] also describe how inequalities and FME can support
array dataflow analysis and a few specific communication optimizations. A limitation of the linear
inequality representations used by these groups is that they cannot represent general non-convex
sets. These representations therefore preclude optimizations such as coalescing communication for
arbitrary affine references [AL93], non-local index-set splitting [KM91], or the use of a general
computation partitioning model such as that used in our work.

Recently, Pugh et al. have reported important progress in developing efficient algorithms for
manipulating and generating code from general non-convex sets [Pug92, KPR95]. This provides
a potentially important new tool for developing parallelizing compilers, but leaves open two key
questions: Is it practical to use these techniques for real programs? And what challenges must be
addressed in formulating and implementing the key analysis and optimizations problems using such
an approach?

The Rice dHPF compiler is based on an abstract integer set framework that expresses data par-
allel program analyses and optimizations in terms of operations on symbolic integer sets. Using this
framework, we have devised and implemented simple, concise, yet general, formulations of the major
partitioning and communication analyses as well as a number of important optimizations. Because
of the simplicity of these formulations, it has been possible to implement a comprehensive collection
of advanced optimizations in dHPF. In most cases, our implementations of the optimizations are
more general than in previous compilers. Furthermore, all these analyses and optimizations fully
support the general CP framework used in dHPF, which is also much more general than that used
in previous compilers as described earlier.

The key data-parallel program analyses and optimizations that we have implemented using
integer sets include:

e communication analysis for a general computation partitioning (CP) model;
e communication vectorization for arbitrary regular communication patterns;
e message coalescing for arbitrary affine references to an array;

e a powerful class of loop-splitting transformations that support several optimizations, including
overlapping communication with computation within a single loop-nest, and reducing the
overhead of accessing buffered non-local data; and

e a combined compile-time/run-time algorithm to reduce explicit data copies for a message.

All of these analyses and optimizations have been implemented in the dHPF compiler. Of these,
the CP model, the loop-splitting based optimizations, the analysis for buffering non-local data, and
message coalescing are all more general than in previous compilers.

Another major advance in the dHPF compiler is related to a fundamental limitation of a general
integer-set based representation, namely that set constraints containing products of integer variables
yield problems that are undecidable [KMP*96]. The primary source of such symbolic product terms
is the HPF distribute directive with unknown processor counts or block sizes. We describe a
natural extension to our framework based on a virtual processor model that supports these symbolic
terms without requiring any changes to the set formulations for the above optimizations. A key
component of this extension is an integer-set algorithm and associated code-generation strategy
that eliminates or reduces runtime checks by restricting the computation and communication to
the active virtual processors. This extension makes it possible to compile HPF programs for an

datag: the index set of an array of rank k,k > 0

loopy: the iteration space of a loop nest of depth k,k >0

procy: the processor index space in a processor array of rank k, k > 1
Layout: proc, — datay: {[p] — [a] : array element a € datay is allocated to processor p € proc, }

RefMap: loopy — data,: {[i] — [a] : array element a € datay is referenced in iteration i € loopy }

CPMap: proc, — loopk : {[p] — [i] : statement instance i € loopy is assigned to processor p € proc, }

Figure 1: Primitive sets and mappings for compiling data-parallel programs.

real A(0:99,100), B(100,100) symbolic N

processors P(4) proc ={[p}: 1< p<4}
template T(lOO,lOO) Aligny, = {[01,01] - [tl,tz] i =a1+1 A= az}
align A(i,j) with T(i+1,j) Aligng = {[b1,b2] = [t1,82] : t2 = b1}
align B(i,j) with T(*,i) Distr = {[ti,t2] = [p] : 25p+1<t2<25(p+1) AO<p<3}
distribute t(*,block) onto P Layouta = Distz" o Align}’ :
read(*), N = {[p] = [a1,a2] : maz(25p + 1, 1) < az < min(25p + 25,100) A
doi=1,N o . ‘?Sa1§99}
doj=2 N+1 Layoutp = Dist1" o Aligng .
lon_homeB(j-1,i) = {[p] = [b1,b2] : maz(25p + 1,1) < by < min(25p + 25,100) A
AGij) = B(-1,) 1< b < 100}
enddo 100p ={[l1,l2]:1311 gN/\ZSleN-*—l}
enddo CPRef = {[l1,ls] = [b1,b2] b2 =l Al =1 —1}

CPMap = Layoutp o CPRef™ (1 ge looP
= {[p] - [ll,lz] 01 S h < mzn(N, 100) N
maz(2,25p + 2) < lo < min(N + 1,101, 25p + 26)}

Figure 2: Construction of primitive sets and mappings for an example program. (Aligna, Aligns,
and Disty also include constraints for the array and template ranges, but these have been omitted
here for brevity.)

unspecified number of processors, and we present experimental results to show that there is little
or no difference in compile-time for a symbolic than for a constant number of processors, even on
fairly large and complex codes such as the NAS SP application benchmark.

In the following three sections, we describe the set framework, some of the optimizations im-
plemented using the framework, and the framework extension for a symbolic number of processors.
Section 3.6.1 presents experimental results showing that the set representation is not a dominant
factor in compile times on both small and large codes, as well as results evaluating the performance
of the compiler generated parallel code.

3.3.1 Description of the Set Framework for Data-Parallel Compilation

An integer k-tuple is a point in 2k a tuple space of rank k is a subset of Z*. Any compiler for a data-
paralle]l language based on data distributions, such as HPF, operates primarily on three types of
tuple spaces, and the three pairwise mappings between these tuple spaces ([AL93, HKT92, KM91]).
These are shown in figure 1.2 Scalar quantities such as a “data set” for a scalar, or the “iteration set”
for a statement not enclosed in any loop are handled uniformly as tuples of rank zero. Hereafter,
the terms “array” and “iterations of a statement” imply scalars and outermost statements as well.

2We use names with lower-case initial letters for tuple sets and upper-case letters for mappings respectively.

Inputs:

Refsread, Refswrite @ sets of read and write references in a single logical communication event
RefMap: : map representing reference r, Vr € Refsread U Refsyrite
CPMap: : computation partitioning map for reference r
Layouta : layout of the common referenced array, denoted A
V: : loop-level of innermost loop enclosing communication for r, after vectorization;
J1...Jv, are index variables of enclosing loops
m : processor index vector for the representative processor m or myid
Algorithm:
(1) CPMapy = CPMap, mrange {[jl,...,jn]:jlz.]l Acagv,=Jdv, A —oo < Jypp1 <00 A L.
(2) DataAccessed; = U CPMap, o RefMap;, (hereafter, t € {read, write})
) rERefsy
(3) NLDataAccessed, = {[E] — [a] : off-processor array elements a referenced by processor p }
_ DataAccessed; — Layouts if t = read
- DataAccessed; N Layouty if t = write
nlDataSet; (m) = NLDataAccessed;({m})
4 NLCommMap;(m) = {[B] ~ [a] : off-processor elements referenced by proc. m and owned by proc. p }
= Layouts (1, nlDataSet: (m))
(5) LocalCommMap;(m) = {[E] — [a] : array elements owned by proc. m to be communicated with proc. p }
= DataAccessed: [),,, .. Layouta({m,})
(6) SendCommMap(m) = LocalCommMaprea{m) |J NLCommMapurite (m)
(7) RecvCommMap(m) = NLCommMapreaa(m) |J LocalCommMapurise (m)

Figure 3: Equations for computing communication sets

The sets loop and proc and the mappings Layout and RefMap are computable directly from
the source program and form the primary inputs for further analyses. Figure 2 illustrates these
primitive sets and mappings for an HPF code fragment. Layout is computed from Align, which
represents the alignment of an array with a template, and Dist, which represents the distribution
of a template on a physical processor array. The iteration set, loop, follows directly from the
loop bounds. The on_home CP notation and construction of CPMap are described in the following
section.

To implement analysis and optimization in dHPF as operations on these symbolic sets and
mappings, we require an integer set package that supports operations including intersection, union,
difference, domain, range, composition, and projection. For this purpose, we use the Omega Library
developed by Pugh et al at the University of Maryland [KMP*96]. Omega supports representation
and manipulation of (potentially non-convex) integer sets described by Presburger formulae, using
algorithms based on Fourier-Motzkin Elimination (FME) [Pug92]. This approach has both ad-
vantages and disadvantages compared to simpler set representations such as extended Rectangular
Sections [HKT93] or Data Access Descriptors [Bal90]. In Section 3.3.3, we discuss the tradeoffs
that arise and describe how we accommodate one of the key limitations of FME.

10

-}

3.3.2 Optimizations using the Integer Set Framework

The integer set framework described in the previous section provides the basis for sophisticated
program optimizations in the dHPF compiler. Our set framework enables us to analyze and optimize
programs with complex computation partitionings, as described in Section 3.2. In this section, we
describe how we use our integer set framework for analysis and optimization.

Implementing Explicit Communication

For message-passing systems, data-parallel compilers must compute the data to be exchanged be-
tween processors, and generate code to pack, communicate, unpack, and reference the non-local
data. Message vectorization is a fundamental optimization for such systems which reduces commu-
nication frequency by hoisting communication for a reference out of one or more enclosing loops. To
vectorize communication, the compiler must compute the set of data to send between each pair of
processors; such communication sets depend on the reference, layout, and computation partitioning.
Message coalescing combines messages for multiple references to eliminate redundant communica-
tion and further reduce the number of messages. Coalescing requires unioning communication sets
and can require sophisticated techniques to enable efficient access to buffered non-local data.

Early phases in dHPF identify potentially non-local references that might access off-processor
data, compute where to place communication for each reference (using dependence and optionally
dataflow analysis to vectorize communication), and which sets of references can have their commu-
nication coalesced. dHPF assumes that all data is communicated to and from its owner(s) only, as
defined by the data layout directives. A read reference is non-local if the location is not owned by
the processor executing the read. A write reference is non-local if the location is owned by one or
more processors besides the processor executing the write. (These definitions are equivalent if data
is not replicated.) We refer to the sequence of messages required for a set of coalesced references
as a single logical communication event.

Given sets of coalesced references and the placement level of communication, we compute the
communication sets for each logical communication event using the inputs and set equations shown
in Figure 3. The goal of these equations is to compute two maps, SendCommMap(m) and Recv-
CommMap(m), for the representative processor m = myid. The maps respectively specify the data
that processor m must send to each other processor p and the data that processor m must receive
from each other processor p. B

The key operations are as follows. Steps 1 and 2 compute the two maps DataAccessed;, t €
{read, write}, which specify the entire set of data accessed by each processor p, via all read and
write references in all iterations of the loops out of which communication has been vectorized. Then
(step 3), the non-local data accessed by read references is the difference of DataAccessed; and the
local data owned by each processor, Layouts. The non-local data accessed by write references
is the intersection of DataAccessed; and the data owned by any other processors. Note that the
read and write equations are equivalent for the common case that each array element is owned
by a single processor, i.e., where the data layout is not replicated.> We convert this map to a set
nlDataSet; (m) specifying the non-local data accessed by the fixed processor m.

We then compute two maps describing the non-local and local data (w.r.t. to the fixed processor
m) that must be communicated with each other processor p (steps 4,5). Restricting the range of
Layouta to the non-local data set, nlDataSet,(m), gives the ‘non-local data referenced by processor

3In this case, in fact, we can skip step (3) and simply use N LDataAccessed; = DataAccessed;, because steps (4)
and (5) will restrict communication to non-local data. During code generation, we ensure that a processor does not
communicate with itself.

11

m and owned by each other processor p. Restricting the range of DataAccessed; to the local section
owned by m gives the local data owned by m and accessed by each other processor p.

Finally, from LocalCommMap; and NLCommMapy, ¢ € {read, write}, we compute the data to
send to and receive from each processor (steps 6,7). Later, we generate code from these maps to
pack and unpack the data at the sending and receiving ends.

The equations presented here unify the handling of both communication vectorization and
coalescing for arbitrary references and communication patterns. This abstract formulation of static
communication analysis has greatly simplified the core of the dHPF compiler and enabled efficient
handling of general classes of computation partitionings and affine references.

Recognizing in-place communication

Common MPI implementations permit data to be sent or received “in-place” (avoiding an explicit
data copy) when the address range of the data is contiguous. To increase the likelihood that
communication can be performed in-place, we develop a combined compile-time/run-time algorithm
for recognizing contiguous data based on the capability of generating code from integer sets.

FORTRAN arrays are stored in column-major order. Accordingly, a rectangular communication
set Cfor data in an array A with n dimensions represents contiguous data if there exists a k such
that for the dimensions 1 < ¢ < k, the set spans the full range of array dimension i, along dimension
k the set has a contiguous index range, and in the low-order dimensions k + 1 < j < n, the set
contains a single index value. Let A represent the local index set of the array, and define S¢;> to
be the projection (i.e., range) of set .S in dimension ¢, 1 < ¢ < rank(S). Then the above condition
can be formalized as:

kst 1<k<n A ANZ¥Cois> = Acis) A

IsConvex(Ccr>) A ATt ,IsSingleton (Cc;s)

To permit runtime evaluation when necessary, we reduce each of the tests to a satisfiability question
for which we can synthesize an equivalent conditional to be tested at run time (if it cannot be proved
at compile-time). The predicate IsConvex(S) reduces to testing if the set ConvexHull(S) — S is
empty. The predicate IsSingleton(S) also reduces to a satisfiability test, but we omit the details
here.

To avoid evaluating O(n?) predicates at compile-time, we use a single scan of the dimensions
(leftmost first) to find the first dimension & for which C¢js # A<k, and check the predicates for
k...n. If in-place communication cannot be proven at compile time, we synthesize code from the
unproven predicates to repeat this scan and check at runtime, when it can be done precisely by
evaluating at most n+42 predicates. In general, this test can be performed much faster than packing
a buffer of modest size. This approach, based on explicit integer sets, enables us to exploit in-place
communication for arbitrary communication sets, independent of data layouts and communication
patterns.

There are currently two limitations of our implementation of this analysis in the dHPF compiler.
First, we apply the compile-time test for in-place communication only to communication sets with
only a single conjunct. Our compiler support can be generalized straightforwardly to handle dis-
joint disjunctions as well when the satisfiability conditions on all conjuncts are mutually exclusive.
Second, the code generation for runtime evaluation of these predicates is currently incomplete.

Loop Splitting

Loop splitting (or non-local index set splitting) is a powerful but complex transformation that has
been proposed to ameliorate two types of communication overhead: the cost of referencing buffered

12

non-local data, and the latency of communication [KM91]. Both techniques involve splitting a loop
to separate the iterations that access only local data from those that may access non-local data.
First, buffer access costs arise when local and non-local data are stored separately, and the correct
location must be chosen with a runtime check on each reference. After splitting local and non-
local iterations, no checks are needed for references in the local iterations. Second, the latency of
communication can be (partly) hidden by splitting because communication required for non-local
iterations can be overlapped with computation of the local iterations.

The only implementation of this transformation we know of is in Kali [KM91], where the authors
used set equations to explain the optimization but used case-based analysis to derive the iteration
sets for special cases limited to one-dimensional distributions. This approach is only practical for
a small number of special cases.

We extend the equations in [KM91] to apply to arbitrary sets of references, and any CP in our
CP model. We first describe loop-splitting for communication overlap, because it subsumes split-
ting for buffer access. We apply loop-splitting to any perfect loop-nest (not necessarily innermost)
containing at least one partitioned loop and having no dependences that prevent iteration reorder-
ing. Since, in dHPF, write references may be non-local, we split the set of iterations of such a loop
nest into four sections: those that access only local data (locallters), and those that only read,
only write, or read and write non-local data (nIROIters, nlWOlIters and nIRWIters respectively).
These sets are computed as shown in Figure 4(a) for a loop-nest containing one or more potentially
non-local references. (The equations shown are applied separately to each statement group in the
loop nest.) The key steps are to compute localDataAccessed, (analogous to computing nlDataSet;
in Figure 3), and then locallters, which are the iterations in which reference r accesses local data.
The desired four sets are then computed by grouping locallters; by read and write references.

We schedule the communication and computation for this loop nest in the sequence shown in
Figure 4(b). When NLRW is non-empty, we can overlap either read or write latency, but not both;
a simple heuristic could be used to choose between the two. The sequence in the figure overlaps
read latency with NLWOIters and Locallters. When NLRW is empty, however, the latency for
writes as well as reads can be overlapped with Locallters by placing the SEND for non-local writes
immediately after NLWOIters. '

This form of splitting subsumes splitting for non-local buffer access. References in the local
iterations do not need buffer-access checks, and a reference r in a non-local loop section (e.g.,
NLROIters) also does not need such checks if nIROIters C nllters, = cplterSet —locallters;, because
the reference will access only non-local data in these iterations.

Code generation for loop splitting subsumes the operation of partitioning the loop by reducing
the loop bounds, since each of the four loop sections is a subset of cplterSet for the statement
group. The code generation is performed as part of the hierarchical code generation framework for
computation partitioning described briefly in Section 3.2 [AMC98a].

3.3.3 Extensions for Symbolic Distribution Parameters

A variety of set representations can be used to implement the set framework, with a wide range of
expressiveness and efficiency. We observe that the primary benefit of using the integer set approach
is that it enables simple but rigorous formulations of the key data-parallel optimization problems.
This benefit is somewhat independent of the generality of the underlying set representation. The
Omega library provides a powerful integer set representation based on FME, and the library has
been invaluable in developing and prototyping the set-based formulations of the optimizations.
Nevertheless, FME has two potential disadvantages which we address as follows.

First, algorithms based on FME have poor worst-case performance. A goal of our research has

13

Inputs:

CPMap : Common CP map for each statement in given statement group SG
Refsread, Refswrite : mnon-local read and write references in SG
RefMap: : map representing reference r, Vr € Refs;eaa U Refswrite
Layoutsa : layout of the common referenced array, denoted A
mep,m, @ processor index vectors as in Figure 3
Algorithm:
cplterSet = CPMap({m})
dataAccessedr = RefMap;(cplterSet)
_ dataAccessed: N Layouts ({m,}) if t =read
localDataAccessed; = { dataAccessed: — Layouts (—{m,}) if t = write
locallters; = Ref;™! (localDataAccessed;)
nlReadlters = cplterSet — ﬂ locallters; SEND data for non-local reads
r€Refs;caq execute NLWOIters
nlWritelters = cplterSet — m locallters, execute Locallters
reRef RECV data for non-local reads
€3 write
* execute NLROIters |] NLRWIters
locallters = cplterSet N ﬂlocallters, SEND data for non-local writes
r RECV data for non-local writes
nlRWlters = nlReadlters N nlWritelters
nlROIters = nlReadlters — nlWritelters
nlWOIters = nlWritelters — nlReadlters
(a) Computing local/nonlocal iteration sets (b) Scheduling loop iterations

Figure 4: Loop splitting to overlap communication and computation.

been to determine whether or not this general approach is practical for commercial HPF compilers.
There is some previous evidence that poor cases may be unlikely to occur in practice [Pug92]. Also,
changing the formulation of a problem can be extremely effective in avoiding complex sets, and has
improved running times by more than an order of magnitude in some cases. In practice, we have not
found the cost of the set framework to be a problem so far, as shown in Section 3.6.1. Nevertheless,
if the approach still proves impractical, we can use one of two alternatives (without sacrificing the
benefits of the simple equational formulations). We can use a simpler set representation such as
Data Access Descriptors [Bal90], or we can use competitive algorithms that limit the time spent on
any single optimization or code generation problem. Both approaches would fall back on runtime
techniques (such as inspector-executor [SCMB90]) which are required in any case for irregular
problems. :

A second, fundamental limitation of Omega is that it does not permit symbolic coefficients in
affine constraints, because multiplication of integer variables renders the underlying class of integer
sets undecidable [Coo72]. Symbolic multiplication is required to represent a symbolic stride, &, for
example, {[i]]:1 <7 < N A 3a s.t. ¢ = ka+ 1}. In compiling an HPF program, symbolic strides
arise for any type of HPF distribution when the number of processors is unknown at compile
time, for the cyclic(k) distribution with unknown k, and for loops with unknown strides. We have
extended our framework to accommodate the limitation on symbolic number of processors and k,
as described below. Loops with unknown strides are not supported by our framework, and would
have to fall back on more expensive run-time techniques such as a finite-state-machine approach

14

Inputs: Same as in Figure 3

Algorithm:
busyVPSet; = U Domain(CPMap.), (hereafter, t € {read, write})
rE€Refs
allNLDataSet; = NLDataAccessed; (busyVPSet)
vpsThatOwnNLData, = Layoutj, (allNLDataSet:)
vpsThatAccessNLDatay = Domain(NLDataAccessed:)
activeSendVPSet = vpsThatOwnNLDatarcaa |J vpsThatAccessNLDatawrite
activeRecvVPSet = vpsThatAccessNLDataread U vpsThatOwnNLDatawrite

(a) Equations for computing the active virtual processors
real A(1:100)
processors PA(P1,P2)
template T(100,100)

align A(i,j) with T(i,j) vpArray = {[v1,v2]:1 < vy,v2 <100}
distribute t(cyclic,cyclic) onto PA loop = {[i,j]: PIVOT+1 <i,j < 100}
CPMap = {[Vl,Vz]—) [l,_]] = /\j =V /\PIVOT<V1,V2 S].OO}
doi = PIVOT+1, 100 RefMapreaa = {[i,j] = [PIVOT,j]} :
doj= PIVOT-_i_,l’ 100 RefMapuwrite = @(no non-local writes)
lon_home{ A(1,j} }
A(i,j) = --- + A(PIVOT,j) busyVPSetread = {[vi,v2]:PIVOT < v;,v2 < 100}
enddo NLDataAccessedreaa = {[v1,v2] = [PIVOT,v;] : PIVOT < vy, vz < 100}
enddo activeSendVPset = {[v1,v2]:v1 =PIVOT A PIVOT < vi1, vz < 100}
. tiveRecvVPset = busyVPSetrea
(b) Gauss parallel loop in achiveRiecvyse usy Chread
HPF (c) Active virtual processors in Gauss loop

Figure 5: Active virtual processors for computing, sending and receiving

for computing communication and iteration sets (for example, [KNS95]).

3.3.4 An Optimized Virtual Processor Model

To circumvent the limitation on symbolic data distribution parameters, we use a standard tech-
nique that avoids representing these parameters explicitly within the set framework, and instead
incorporates them directly during code generation [AL93, GKHS96]. We refine this technique to
provide significantly simpler code for block distributions (by far the most common in practice). We
also add an additional optimization to to eliminate or reduce the runtime overhead in the resulting
code. Gupta et al. [GKHS96] apply a similar strategy but their approach was based on detailed
analysis of specific cases. Instead, we describe a general integer-set-based algorithm to perform this
optimization. The VP model and optimization are as follows. ‘

To avoid representing the distribution explicitly, we replace each physical processor array in our
equations by a virtual processor (VP) array corresponding to using template indices (i.e., ignoring
the distribute directive) in dimensions where the block size or number of processors is unknown, but
using one virtual processor index per physical processor index in all other dimensions. (We do not
require template sizes to be known constants.) We make this replacement simply by constructing
the Layout mapping as a map from VP indices to data elements. All the analyses described in the
previous sections then operate unchanged on this virtual processor domain. During code generation
for each specific problem (e.g., generating a partitioned loop), we add extra enclosing loops that

15

do v = vlb, vub do firstVP = vlb, min(vub, vlb+P) myVLB = ((activeSendLB-tLB)/P)*P + m + tLB

! pack data for v pid = (firstVP-tlb) % P + tlb if {myVLB .lt. activeSendLB) myVLB = myVLB + P
! send data to v do v = firstVP, vp2, P do firstVP = vlb, min(vub, vlb4P)
enddo ! pack data for v pid = (firstVP-tlb) % P + tlb
enddo do myVP = myVLB, activeSendUB, P
! send data to pid do vl = firstVP, vub, P
enddo ! pack data for vl
enddo
enddo
! send data to pid
enddo

(c) Adding active virtual processor loop

(a) Initial SEND code from (b) Separating physical and (final SEND code)

Domain(SendDataMap(m)) virtual processors

Figure 6: Code generation for SEND with optimized virtual processor model

enumerate the VPs that are owned by the physical processor myid. Also, when generating code
for communication, we must aggregate the messages to all the VPs belonging to the same physical
processor. These code generation steps are described in Section 3.3.5.

The refinement we use for block distributions is as follows. Consider a template dimension of
extent N that is block-distributed on a processor array dimension of extent P, and let B = [N/P]
be the block size. The precise representation of this distribution is {[t] = [p] : Bp+1 < ¢t <
Bp+ BA1<t< NA1l<p< P}. In this case, only the product term Bp is not directly
representable. We compute a distribution onto virtual processors as follows: {[t] = [v] : v <t <
v+B-1A1<t< N A1<wv< N} Intuitively, this assumes that the virtual processor v “owns”
template elements [v, v+ B —1]. Each physical processor p is mapped to a unique virtual processor
v = Bp + 1. However, any other value of v represents a fictitious virtual processor not mapped to
any physical processor. The special physical processor id m used in Figures 3 and 4 is replaced
by its virtual processor id v,,;, = Bm,; + 1. Therefore, the generated SPMD code is automatically
parameterized by vy, instead of m.

There are two key advantages in using this refinement for the block distribution, and both are due
to the property that there is a single virtual processor per physical processor. First, this property
implies that no additional virtual processor loops are required. In fact, v, always represents a
true physical processor (myid), and therefore a block distribution does not require any additional
changes to the computational loops in the generated SPMD code (even with transformations such
as non-local index set splitting). Second, the above property implies that the communication sets
capture the entire section that must be communicated to each physical processor (for each block
dimension). This enables some optimizations and simplifies code generation. For example, if all
array dimensions are block-distributed, the equations for recognizing in-place communication can
be applied to the communication set to determine whether in-place communication is feasible. For
code generation, the only additional step required is to ensure that communication is not attempted
with a fictitious virtual processor. This step is described in Section 3.3.5.

For cyclic and cyclic(k) distributions, there are multiple virtual processors for each physical
processor. However, not all virtual processors owned by a physical processor are necessarily “active”
in any particular operation (a partitioned computation, sending data, or receiving data). An
additional optimization step can be used to eliminate or reduce runtime overhead by restricting the
virtual processor loop to the set of VPs owned by processor myid that are actually active. Since
such a set for a single physical processor would not be directly representable, in general, we do this
in two steps. We first use the integer-set equations shown in Figure 5(a) to compute the set of
active VPs across all processors for the problems of interest. Then, we generate a loop nest from
this set and explicitly rewrite the loop bounds to restrict it to the active VPs owned by processor

16

mytd.

First, the set of active VPs for any partitioned computation, denoted busyVPSet, is simply the
domain of CPMap. (As in Figure 4, this must be applied for each statement group in a loop nest.)
Second, for each logical communication event, the active VPs that must send or receive data can be
computed directly from NLDataAccessed;, the map from processors to non-local data referenced by
each processor (t € {read, write}). This map is already computed for communication generation
(Figure 3). The map is first used to compute the sets of all virtual processors that own non-local
data and all those that access non-local data (vpsThatOwnNLData, and vpsThatAccessNLDatay).
These in turn directly provide the virtual processors that must be active'in sending or receiving
data.

The results of these equations are illustrated for the Gaussian Elimination example in Fig-
ure 5(b,c), where the reference to the pivot row, A(PIVOT, j), requires off-processor data. The
busyVPSet reflects that only VPs corresponding to the lower, right portion of the matrix A are
active. activeSendVPSet and activeRecvVPSet indicate that only VPs owning elements in the pivot
row (PIVOT) must send any data, but all VPs active in the computation (busyVPSet) must receive
non-local data. In practice, we can generate code so that only one VP per physical processor will
receive each such element.

3.3.5 Code Generation using Virtual Processors

Given the active virtual processor sets computed above, a few conceptually simple steps are required
to generate final SPMD code.

For a computational loop nest, if the CPs of all statement groups are described via block-
distributed arrays, no additional steps are required as explained earlier. If any array dimension
used in a given CP has a cyclic or cyclic(k) distribution, we must enclose the loop nest with one
extra loop for each such dimension. We generate these loops as follows. We first generate a loop
nest to enumerate the elements of the set busyVPSet computed from the CP. For each loop in
the nest, we then directly modify its bounds and stride to restrict the loop to the active VPs
owned by processor m. For example, for the 7 dimension in Figure 5, the final VP loop would have
Ib= (PIVOT/P)* P+m+ 1+ (m < PIVOT%P)?P : 0, ub = 100, and step = P1. If non-local
index-set splitting is applied to the loop nest, the same virtual processor loop nest would have to
be wrapped around each loop nest section.

For communication code, we describe the steps required for the sending side; the receiving code
is similar. The steps are illustrated in Figure 6, assuming a 1D processor array with P processors,
a template with lower bound ¢tLB, and a cyclic distribution. First, we generate a loop nest to
enumerate Domain(SendDataMap(m)), viz., the virtual processors to which processor m must
send data, and insert code to pack data for v by enumerating Range(SendDataMap(m)) (part (a)
of the figure). Then, we rewrite this loop to separately enumerate the physical processors, and the
virtual processors for each physical processor (part (b)). Finally, we enumerate the active sending
processors owned by m, by applying the procedure described above (for busyVPSet) to the set
activeSendVPSet. This loop nest is wrapped around the inner virtual processor (packing) loop,
yielding the final send code in part (c). (The block distribution case is again much simpler because
the two inner virtual processor loops are not required.)

More generally, if the original loop-nest of part (a) had r loops in a (possibly imperfect) loop
nest, we generate r physical processor loops with the same nesting structure. If k& of these loops
correspond to cyclic data dimensions, we generate 2k virtual processor loops in a single perfect
loop nest enclosing the packing code. Finally, we insert one copy of this virtual processor loop nest
into each innermost physical processor loop.

17

The extensions described above enable us to use a very general set representation without unduly
restricting the use of symbolic quantities. The additional complexity introduced by these techniques
is largely encapsulated in the implementation of the framework, and (we believe) are outweighed by
the analysis capabilities and flexibility the integer set framework provides. Measurements described
in Section 3.6.1 show that the compile-time cost of the symbolics extension is also not significant.

The extensions for supporting symbolics quantities also play an important role in the techniques
for supporting multipartitioning distributions, discussed in the next Section.

3.4 Computation Partitioning Optimizations

The previous section presented the general computation partitioning model supported by the dHPF
compiler. In this section we describe three new program optimization strategies used by dHPF that
exploit the generality of the partitioning model by using sophisticated computation partitionings
to improve parallelism and reduce communication frequency and volume.

3.4.1 Computation Partitioning for Reductions

The dHPF compiler recognizes implicit reduction operations by analysis of loop nests and then
determines how to decompose the computation and data across the processors in a fashion that
not only parallelizes the application, but also minimizes communication. This is process is describe
in detail elsewhere [LMC98]. Here we briefly describe how the general computation partitioning
model in dHPF is an enabling technology for generating efficient code for reductions.

There are three steps in parallelizing a reduction operation. We illustrate this process using a
SUM reduction consisting of a loop containing the statement S = S + A(i) as an example. First,
in a reduction preamble, each processor stores the original value of S into a temporary variable T,
and initializes S to be zero. Second, in the reduction core, each processor owning a part of array A
involved in the reduction computes the partial sum its local values into S. Finally, in a postamble,
the processors accumulate their partial sums using a collective communication operation, and add
back the value saved in T to get the final sum. We assign a replicated cP to the preamble and
postamble, that is, every processor initializes the partial sum and participates in producing the
final reduction value using collective communication. The cP for the partial sum computation
S = S+ A(i) would be ON_HOME A(7) or ON_HOME of one of the references if there are several
references on the right hand side.

Factorization and Data Locality Suppose we have a reduction statement

S=8® A(AG) ® A2(fo(D) ... ® An(fn (D))

in a loop nest where 7 is the vector of enclosing loop indices, n > 1, and & is a commutative and
associative operator. If some of the arrays A; ... A, are distributed differently, some instances of
this statement will need to read off-processor data no matter how we specify their cp. For example,
suppose we compute the above statement ON_HOME Ay (f1(7)). If Aa2(f2(7)) is not always local to
all of the processors owning values referenced by A;(f; (5)), some processors owning elements of
A1(f1(?)) will need to read non-local values for A2(f2(3)) to compute the partial sum for their
assigned statement instances.

We can eliminate the need to read off-processor data by factoring the above reduction statement
into a sequence of statements:

S=S®AA®D), S=S5 Af(),
cey S:S@An(fn(a)

18

CSHPF DISTRIBUTE lhs{*,BLOCK,BLOCK,*) onto procs
do 10 k = 1, grid points(3)-2
CSHPF INDEPEHDEHT NEM {rul ,cv,rhog)
do 10 i = 1, grid points(1)-2
do 20 j = 1-1, grid points{2)-1

rul = c3cd*rho_i(i,j k) ON_HOME Ihs §jH.k.2. Ihsiijk.3), Ihsfij1.k.4)

cr{j) = vs{i,j,.Kk) DR _HOME Ihs{ij¥ k. 2) Ihsdj1 kd
20 rhog(i) = 1 ElhsiijH k2) Ibs ik 2 Ihsd i1k d)
* dmax1{ dy3Hcond3*rul ,dy5 + clc rul,)

do 30 j = 1, grid points(2)-2
[Ths{i,J K 1}| = 0.04D
Ths{1i,].k

rhog{j~-1}

m * rhog{j+1}
30 Ths({i,j,K,b5)

10 continue

Figure 7: Computation partitioning for a loop nest from subroutine lhsy of the NAS SP compu-
tational fluid dynamics benchmark.

After this transformation, we can compute each reduction statement S = S@Ak(fk(f)) (1<
k < n) ON_HOME Ay (fk@) without communication. Our compilation model accommodates the

factorization process in a natural fashion. Each of the simple statements factored out of a complex
statement will be in the same reduction group whose final result will be accumulated by a single

collective communication operation in the postamble.

3.4.2 Parallelizing Computations that use Privatizable Arrays

Within complex loop nests in scientific codes, temporary arrays are often used to hold intermediate
data values so that they can be reused in the same or subsequent iterations. Typical uses of a
temporary array are to save a reference copy of values before they will be overwritten, or to store

partial results of a computation that will be used later.

Indiscriminate use of temporary arrays can be an obstacle to effective parallelization of a loop
nest because they introduce dependences between different loop iterations. However, in the special
case when each element of a temporary array used within a loop iteration is defined within that
iteration before its use, and none of the elements defined in the loop are used after the loop, the
iterations of the loop nest are fully parallelizable. Such an array is said to be privatizable on the

programmers to signal a compiler that an array is privatizable.

directives added.

19

loop. The High Performance Fortran NEW directive provides a convenient syntactic mechanism for

Even once a compiler knows which arrays are privatizable within a loop nest, it can be challeng-
ing to effectively parallelize the loop nest for a distributed-memory machine. For example, consider
the loop nest from subroutine lhsy of the NAS 2.3-serial SP benchmark shown in figure 7 with HPF

In this example, the NEW directive specifies that the cv and rhoq arrays are privatizable within

the i loop. The difficulty in this case arises in trying to exploit the potential parallelism of the
j loop. When computing the privatizable arrays cv and rhoq, there are two obvious alternatives,
both of which are unsatisfactory here. If a complete copy of the privatizable array is maintained
on each processor, each processor will needlessly compute all the array elements even though only
about 1/P of the values will be used by each processor within the second j loop nest. On the other
hand, if the privatizable array is partitioned among processors and each processor computes only
the elements it owns, then each processor will have to communicate the boundary values of rhoq
and cv to its neighboring processors for use in the second j loop. This would require a large number
of small messages between processors, which would also have very high overhead.

In the dHPF compiler, we address these problems by having each processor compute only those
elements of the privatizable array that it will actually use [AJMCY98]. When some array elements
(such as the boundary elements of cv and rhoq in the example) are needed by multiple processors,
the compiler partially replicates the computation of exactly those elements to achieve this goal.
This is cost-effective in that it is the minimal amount of replication that completely avoids any
communication of the privatizable array in the inner loop. The general CP model in dHPF is
crucial for expressing the CPs required by this strategy. For a statement defining a privatizable
variable, we assign a CP that is computed from the CPs of each of the statements in which the
variable is used. This is done as follows.

For each loop nest, the compiler first chooses CPs for all assignments to non-privatizable vari-
ables using a global CP selection algorithm that attempts to minimize communication cost for the
loop nest. For the code shown in Figure 7, the algorithm chooses owner-computes CPs for each
of the five assignments to array lhs. The CPs for these assignments are represented by the boxed
left-hand-side references. We then translate these CPs and apply the translated CPs to the state-
ments that define the privatizable arrays, cv and rhoq. In figure 7, the arrows show the relationship
between definitions and uses.

There are three steps to translating a CP from a use to a definition. First, where possible, we
establish a one-to-one linear mapping from subscripts of the use to corresponding subscripts of the
definition. For the case of the use cv(j-1), this corresponds to the mapping [§]%f — [j — 1]**.
(Note that the j on the left and j in the right refer to two different induction variables that just
happen to have the same name.) If it is not possible to establish a 1-1 mapping for a particular
subscript, or the mapping function is non-linear, this step is simply skipped. Next, we apply the
inverse of this mapping to the subscripts in the on_home references in the CP of the use. This
translates on_home lhs(i,j,k,2) to on_home lhs(i,j+1,k,2). Finally, any untranslated subscripts that
remain in the CP from the use are vectorized through any loops surrounding the use that do not
also enclose the definition. (There are no such subscripts in this example.)

Vectorization transforms a subscript that is a function of a loop induction variable into a
range obtained by applying the subscript mapping to the loop range. The statement defining a
privatizable array gets the union of the CPs translated from each use in this fashion. In figure 7, a
translation is applied from the use CP to a definition CP along each of the red and green arrows.
For a privatizable scalar definition, the process is simpler. There is no subscript translation to
perform; CPs from each use are simply vectorized out through all loops not in common with the
definition. The blue arrow represents a trivial vectorization (a simple copy) of the CP from the
uses of the privatizable scalar rul to its definition since the use CPs are on statements in the same
loop.

The effect of this CP.propagation phase is that each boundary value of cv(j) and rhoq(j) is
computed on both processors at either side of the boundary, therefore avoiding communication
for these arrays within the i loop. All non-boundary values of cv and rhoq are computed only on
the processor that owns them. Through this example, we have illustrated how our strategy avoids

20

both costly communication inside the i loop, as well as needless replication of computation. It
is worth noting that this CP propagation strategy for NEW variables is insensitive to the data
layout of these variables. Regardless of what data layout directives for the NEW variables may be
specified, CP propagation ensures that all and only the values that are needed on each processor
are computed there.

3.4.3 Partial Replication of Computation

To support efficient stencil computations on distributed arrays, we developed support in dHPF
for a new directive we call LOCALIZE [AJMCY98]. By marking a variable with LOCALIZE in
an INDEPENDENT loop, the user asserts that all of the values of the distributed array that has
been marked will be defined within the loop before they are used within the loop. Furthermore, the
LOCALIZE directive signals the compiler that the assignment of any boundary values of the marked
arrays that are needed by neighboring processors within the loop should be replicated onto those
processors in addition to being computed by the owner. Unlike the NEW directive which requires
that values assigned to a marked variable within the loop are not live outside the loop, variables
marked with LOCALIZE for a loop may be live after the loop terminates. Marking a variable with
LOCALIZE for a loop has the effect of ensuring that no communication of the marked variables
will occur either during the loop or as part of the loop’s finalization code. Instead, additional
communication of values will occur before the loop to enable boundary value computations for the
marked variables to be replicated as required to ensure that each use of a marked variable within
the loop will have a local copy of the value available. To explain how the dHPF compiler uses
its general CP model to implement such partial replication of computation, consider the loop nest
shown in figure 8 from subroutine compute_rhs of the NAS 2.3-serial SP benchmark, with HPF
directives added.

In compute_rhs, rhs is evaluated along each of the xi, eta, and zeta directions. Along each
direction, flux differences are computed and then adjusted by adding fourth-order dissipation terms
along that direction. To reduce number of operations (especially floating-point divisions) reciprocals
are computed once, stored, and then used repeatedly as a multiplier at the expense of storage for the
reciprocal variables rho i, us, vs, ws, square , and gs. Without partial replication of computation,
the best CP choice for each statement that defines a reciprocal would be on_home var(i,j,k) (where
var stands for one of the reciprocal variables), and the statements that add dissipations would be
on_home rhs(i,j,k,m) (1 < m < 6). However, this CP choice causes each subsequent reference to
the reciprocal variables var(i,j-1,k) and var(i,j+1,k) in the rhs computation along the eta direction
to become non-local. Similar references along the zeta direction become non-local as well. In this
case, the boundary data of all these arrays would need to be communicated, which can be costly
in distributed memory systems.

To reduce the cost of boundary communication for the reciprocal variables, we added an outer
one trip loop to define a scope in which to LOCALIZE the reciprocal variables. In a fashion
similar to how we calculate CPs for statements defining privatizable arrays, CPs for statements
that define elements of arrays marked LOCALIZE are translated and propagated from statements
that use these elements later. Consider the reciprocal variable rho. in Figure 4.2. To calculate
the CP for the statement defining elements of rho., we translate the on_home CP at each of the
use sites and propagate it back to the definition site. For the xi direction flux computation we
translate on_home rhs(i,j,k,5) to on_home rhs(i+1,j,k,5) from the use rho.i(i+1,j,k), and on home
rhs(i-1,j,k,5) from the use rho_i(i-1,j,k). The same translation process needs to be performed for
uses in the eta and zeta directions. The CP of the statement that defines rho. finally is set to the
union of all the propagated CPs as well as the definition’s owner-computes CP on_home rhoi(i,j,k).

21

C$HPF DISTRIBUTE (*, BLOCK, BLOCK) onto procs :: rho_i, us, vs, ws, square, gs
C$HPF INDEPENDENT, LOCALIZE {rho_i, us, vs, ws, square, gs)

dooretrip=1,1 ! enclosing ane-trip loop
dok=0,N-1;doj=0,N-1;doi=0,N-1 ! reciprocal computation
rho_i{i,j K\= ... ON_HOME vho_itj, k), rhs i+ 5) vhsfj-15 9 ..
us(i,j.k)=".. ON_HOME usfj, i), rhs(iitll, 2.5, shsfii-1k 2:9...
vsij kst O _HOME w5, k), rhsfytLi3) rhsii-1h3) ..
ws(ij Jon20 ON_HOME wsfi. k), vhsfg+li 4l rhsfi-15 9 ..
square(i \ CH_HOME square (. k), hs(i+L R 2, vhsfij-1h2) ..
gs(i,j ke . \\\@\ ik ON_FHOME ge(ii, k), vhe(ui LR 5, rhs(ig-15 9 ...
! xi-direction _
dok=1,N-2} n‘ K dqis], N-2 [edo-direction
=\ dgated %\% suare(i-1j,4) ..
[ths(ij k,3} = ... %s{ij D) SysipsLK) ...

ths(ij KA} = ... w3 jH1K) wgwsij-Dk) ...

[ThSETES) = . qsEi+1) .. as -1
o tho_i{ij+1,k) ... vho_i(ij-1 K)...

) zeta-direction ...

Figure 8: Using LOCALIZE to partially replicate computation in subroutine compute_rhs from
NAS SP.

Thus, the CP for the definition of rho_i becomes the union of on_home rhs(i+1,j,k,5), on_home rhs(i-
1,j,k,5), on home rhs(i,j+1,k,5), on_home rhs(i,j-1,k,5), on_home rhs(i,j,k+1,5), on_home rhs(i,jk-
1,5), and on home rho.(i,j,k). By partially replicating computation, computation of boundary
data is executed not only on the processor which owns the data, but also on processors that need
the data. As a result, the boundary communications of rho_i along the distributed directions can
be eliminated. Similarly we can avoid the communication for us, vs, ws, square, and gs in the
compute.rhs with the partial replication of computation. The dHPF compiler applies this same
technique to subroutine compute_rhs in the NAS BT application benchmark.

Though partial replication of computation itself might introduce additional communication for
the statements at the definition sites as an effect of the CP selection, it is beneficial when the
number of messages and volume of the data to partially replicate the computation is smaller than
transferring the values of the arrays marked LOCALIZE.

3.5 Code Generation for General Computation Partitions

A computation partitioning provides a specification of which dynamic instances of each statement
must be executed by each processor. The dHPF compiler uses the computation partitioning speci-
fied for each statement as the basis for generating a statically-partitioned single program multiple
data (SPMD) node program. Unlike previous partitioning models, the model used by dHPF sup-
ports partitioning of general control flow statements. As part of the dHPF project, we developed
a code generation strategy that can support this more general partitioning model.

A key challenge to implementing computation partitionings specified by our model is to generate
efficient code for loops. Since each statement in a loop can have a different partitioning, it may be
necessary to split a loop into multiple convex sections to avoid expensive runtime checks. A key

22

design choice is how to generate code for nested loops. A top-down strategy (in which outer loops
are processed before the statements they enclose) can provide precise information about enclosing
scopes because they will have already been partitioned. However, exploiting this precise information
can be costly, requiring many more applications of the partitioning algorithm than a bottom-up
strategy. For example, consider the cost of generating code for a triply nested loop for which each
loop is eventually split into two sections. A top-down strategy would invoke the loop partitioning
algorithm once for the outermost loop, twice for the middle loop, and four times for the inner loop.
In contrast, a bottom-up strategy would invoke it only three times; however, at the inner levels, it
would have no information about the two separate sections that will result at the outer levels.

We use a two-pass algorithm to resolve this tradeoff, using the more efficient bottom-up strategy
to synthesize a correct (and fairly efficient) partitioned SPMD node program, and then use a
simpler “top-down” algorithm to further simplify the resulting code. The second top-down pass
uses contextual information to simplify control flow by using knowledge about enclosing scopes.
We describe these two passes briefly below.

3.5.1 Realizing Computation Partitions

As the first step in code generation for realizing the computation partitionings specified by our
model, we use a hierarchical, bottom-up code generation strategy [AMC98b]. Code generation
proceeds in a depth first traversal over the tree of scopes in a procedure. For each scope, we
compute a vector of sets, CPMap(m), one for each statement group in the scope. (A statement
group is a sequence of consecutive statements with identical computation partitionings. {m} is
a singleton set representing the processor index vector for the fixed processor myid.) We use
Kelly, Pugh, and Rosser’s algorithm for multiple-mappings code generation [KPR95] to compute
loop bounds and guards that enumerate the SPMD iteration space for each statement group in
the scope. To avoid adding the same guards at multiple levels, we treat the iteration set of the
immediately enclosing scope statement as “known” information. This means that these constraints
will be enforced when generating code for the enclosing scope and do not need to be enforced again
for any scope nested inside. v

To partition a procedure based on CP assignments, we perform a post-order traversal of a
tree-based data abstraction of the procedure, applying code generation transformations as needed
at each node in the tree. A node in the tree represents a single DO statement, a single branch of a
conditional branch, or a sequence of simple statements. At each node in the tree, the code generation
strategy to apply is selected independently. For loops, we currently support two strategies: simple
bounds reduction, or loop-splitting (as described in Section 3.3.2) combined with bounds reduction
for the individual loop sections. Other alternatives applicable to loops with irregular data layouts
or references, namely runtime resolution and an inspector-executor can be added to this framework.

To partition computation for a sequence of statements with regular computation partitionings
that can be represented explicitly as integer mappings, we use the Omega library’s algorithm
for code generation with multiple iteration spaces [KPR95]. This algorithm takes a vector of
possibly non-convex) iteration spaces, each representing a statement, and uses it to synthesize a code
template that enumerates the iteration space for each statement in lexicographic order. Figure 9
shows two iteration spaces and the corresponding code template produced by this code generation
algorithm. In the code template, s1 and s2 represent placeholders for the statements represented
by the first and second iteration space, respectively. While this code generation algoritjm is very
powerful, it must be used carefully because it can be costly as its implementation is based on FME,
which has doubly exponential complexity in the worst case [Sch86].

This code generation algorithm reduces loop bounds and can lift guards out of inner loops when

23

for(tl = 1; t1 <= 10; ti++)
if (cond >= 4 &% t1 <= 6)

{[6,4]1:1<i<10 A1 <5 <5} for(t2 = 1; t2 <= 5; t2++)
.. .) s1(t1,t2);
{[5,7]:1<i1<6 AN1<j<5 Acond > 4} s2(t1,t2) ;

if (t1 >= 7 && cond >= 4)
for(t2 = 1; t2 <= 5; t2++)
s1(t1,t2);
if (cond <= 3)
for(t2 = 1; t2 <= 5; t2++)
s1(t1,t2);

Code template generated using

Two iterati .
() Two iteration spaces (b) Omega’s FME-based code generation.

Figure 9: Constructing a code template from iteration spaces.

dOSilz_ LN LoopCPy() = Project(CPi(i) U LoopCPo(i), {[{]: 1<i<N})
do(g)z 1, M CPi(1) = {[i,7]: myid owns A;(f1(7))}
S2(i,j) LoopCPy(i) = Project(CP(:,j)UCPs(4,5), {[J]:1<i<M})
S3(i) CPy(i,j) = {[i,s]: myid owns As(f2(4,5)) } ‘
ohddo CPy(i,g) = {[i,d]: myid owns Aa(fa(i,) }

Figure 10: Example showing iteration sets constructed for code generation.

multiple statements with non-overlapping iteration spaces exist. An important step for simplifying
the code we generate for a scope is to provide available information about enclosing scopes. For
example, consider the loop nest in Figure 10. To generating code for the inner (j) loop alone, we fix
the value of ¢ at a symbolic value I. We then use LoopCP,(I) as “known” information because the
constraints in LoopC P,(7) will be enforced when partitioning the enclosing ¢ loop. Therefore, the
inner loop is partitioned for the vector of CPs [CP,(1,5),CPs(1,5)] with LoopCP,(I)) as known
information. Then, the outer loop is partitioned for the vector of CPs [C' P (j), LoopC P,(%)] with
LoopC Py () as known information.

We use the example source loop nest in Figure 11 to illustrate the dHPF compiler’s bottom-up
computation partitioning code generation strategy for compiling an HPF program to a message-
passing system. This code is a fragment abstracted from a pipelined computation in the Erlebacher
benchmark, a derivative calculation using an implicit sixth-order compact-differencing scheme.*
Comments in the figure show the computation partitioning (CP) and the initial placement of
communication operations chosen automatically by the dHPF compiler. Figure 12 shows the corre-
sponding intermediate code generated by dHPF. (For brevity, Figure 12 uses “COMPUTE £(1:64,

k)” to represent a copy of the i loop.) The innermost statement is assigned to be executed
by the processor that owns £(i,j,k), as defined by the alignment and distribution of the array
f. This results in the k loop being partitioned among the processors. The reference £(i,j,k+1)
therefore accesses non-local data, and the required communication is placed inside the k loop since
the communicated data is modified inside this loop.

During code generation, communication is represented simply by placeholders for SEND and

*This benchmark was developed by Thomas Eidson at ICASE.

24

parameter (N=64)
real c(N), f£(N,N,N)

CHPF$ processors p(4)
CHPF$ distribute f(*,*,block) onto p

CHPF$ distribute c(block) onto p
do j=1,N
do k=N-1,1,-1
C SEND f(1:N,j,k+1) ! ON_HOME f(1:N,j,k+1)
c RECV £(1:N,j,k+1) ! ON_HOME £(1:N,j,k)
do i=1,N

10

11

RECV statements. The compiler assigns appropriate CPs to these placeholders to ensure the
communication is executed by the required processors. These CPs simply specify that the SEND is
to be executed by the owner of £(i,j,k+1) and the RECV by the reader of the data, viz. the owner
of £(i,j,k) (for 1 < i < N). Note that these communication CPs are conservative because the

£(i,j,k) = £(i,j,k) - c(k) * £(i,j,k+1) ! ON_HOME £(i,j,k)

Figure 11: HPF source fragment abstracted from the Erlebacher benchmark.

do j =1, 64
if (pmyidl <= 2) then
k = 16 * pmyidl + 16
!--<< Iterations that access only local values >>--

if (16 * pmyidl >= k - 15) then 'UNSATISFIABLE
COMPUTE £(1:64, j, k)
if (16 * pmyidil == k - 16 &% pmyidl <= 2) then !TAUTOLOGY

RECV £(1:64, j, 16 * pmyidl + 17)

!--<< Iterations that read non-local values >>--

if (16 * pmyidl <= k - 16) then !TAUTOLOGY
COMPUTE £(1:64, j, k)

do k = 16 * pmyidl + 15, 16 * pmyidl + 1, -1

if (16 * pmyidl == k && pmyidl >= 1) then- 'UNSATISFIABLE
SEND £(1:64, j, 16 * p_myidi + 1)

!-—<< Jterations that access only local values >>--

if (16 * pmyidl >= k - 15) then !TAUTOLOGY
COMPUTE £(1:64, j, k)
if (16 * pmyidl == k - 16 & pmyidl <= 2) then |UNSATISFIABLE

RECV f£(1:64, j, 16 * pmyidl + 17)

!--<< Iterations that read non-local values >>~~

if (16 * pmyidl <= k - 16) then 'UNSATISFIABLE
COMPUTE £f(1:64, j, k)

if (pmyidl >= 1) then

k = 16 * pmyidl

if (16 * pmyidl == k && pmyidl >= 1) then !TAUTOLOGY
SEND £(1:64, j, k + 1)

Figure 12: Skeletal SPMD code for Fig. 11 with partitioned computation.

25

SEND and RECV should actually execute only in a subset of the iterations of the & loop, namely
in the “boundary” iterations on each processor.® We rely on conditionals in the communication
code instantiated for the SEND and RECV placeholders to enforce precisely when communication
needs to occur.

Here we briefly describe two key steps in performing the computation partition code generation
for this example:

1. Non-local indez-set splitting on the 1 loop: This step splits the innermost loop to separate the
iterations that access only local data from those that access non-local data. The motivation
for this splitting operation is twofold. First, it enables data communication for non-local
iterations to be overlapped with the computation of local iterations. Second, it is desirable
to access non-local data directly out of communication buffers (to avoid data copies) while
still accessing local data in-place; splitting minimizes the execution frequency of ownership
guards needed to select between the local and non-local storage areas. (These guards are not
shown in this example.)

Splitting the i loop results in two full copies of the loop with different conditions on k
(k < 16 * pmyidl + 15 and k > 16 * pmyid1 + 16 on lines 8 and 10 respectively). During this
step, the only information available about the enclosing context is that the bounds of the k
loop will be reduced according to the CPs of its enclosed statements, i.e., 16 * pmyidl < k <
16 * pmyid1 + 16.

2. Loop bounds reduction with guard lifting on the k loop: This step reduces the loop bounds
of the k loop to partition the iterations among processors as specified by the CPs assigned
to the SEND, COMPUTE, and RECV statements. Since the SEND should not execute
in the first iteration of each processor and the RECV and COMPUTE blocks should not
execute in the last, the loop is fragmented into three sections to avoid introducing additional
ownership guards within the k loop. The resulting loop sections are {k = 16 * pmyid1 + 16},
{16 + pmyid1 4+ 15 > k > 16 * pmyidl + 1}, and {k = 16 * pmyidi}. The COMPUTE blocks
for the two sections of the i loop (local and non-local) are simply replicated in the first two
sections of the k loop (lines 3,5 and 8,10). Similarly, the RECV and SEND are replicated
as shown. The aforementioned fragmentation of the k loop results in refined contexts for
copies of the i loop code inserted into each fragment. As a result of this fragmentation, the
conditions on lines 3, 7, 9 and 10 are unsatisfiable, and those on lines 4, 5, 8 and 11 are
guaranteed true as noted in figure 12.

The index-set splitting [AMC98b, KM91] in step 1 and guard lifting in step 2 described above
are sophisticated transformations that aim to minimize the dynamic frequency of conditionals and
otherwise improving the efficiency of generated code. These transformations have the effect of
splitting a loop into more refined contexts. Since we generate code for loops bottom up, these
refined contexts are not exploited in this phase. However, the refined contexts created introduce
many opportunities for simplifying guards generated for inner fragments. Later code generation
steps that produce code for communication operations and add ownership guards for references also
are performed without contextual knowledge. In the following section, we describe how we exploit
contextual knowledge in a top-down pass to eliminate unnecessary guards rendered unnecessary.

5Communication CPs are conservative only when communication happens inside a partitioned loop. In such cases,
precise CPs for communication are difficult to compute and express in any general manner since communication
patterns can be quite complex.

26

3.5.2 Constraint Propagation and Control Flow Simplification

Here we describe a new global optimization strategy developed for the dHPF compiler to elim-
inate redundant conditional control flow generated in the course of compiling data-parallel pro-
grams [MCA97, MCA98]. As described in the previous section, applying our our bottom-up code
generation algorithm to loops refines the context they present to code fragments nested inside. This
refinement of enclosing context for a code fragment can cause some conditionals in the fragment
to become wholly or partly tautological or unsatisfiable, rendering them unnecessary. Applying
our top-down code optimization strategy to SPMD code generated by the dHPF compiler for three
benchmarks of varying complexity showed that our approach is consistently highly effective at sim-
plifying the conditional control flow once contextual knowledge is available. For the benchmarks
we studied, our control-flow simplification strategy eliminated 35% to 67% of the if statements
that were present after SPMD code generation.

Our control-flow simplification optimization is performed in three phases. The first phase ana-
lyzes the initial SPMD code generated by dHPF during a prior (bottom-up) code generation pass.
This analysis phase collects symbolic constraints on the values of integer expressions imposed by
loops, conditional branches, assertions, and integer computations, and propagates these constraints
over the control dependence graph. The constraints we compute for each point p in the program
are conservative approximations of its path condition, which specifies the precise conditions under
which p will be reached during execution. The second phase uses propagates these constraints, as
appropriate, throughout the program. The third phase uses the propagated constraints to eliminate
or simplify conditional tests whose outcome can be determined (in full or in part) at compile time,
and simplifies the control flow based on those tests.

While we use this strategy for eliminating superfluous conditional control flow in SPMD code,
it could also be used for other applications such as debugging [Bou93], optimizing embedded sys-
tem software [Joh86], optimizing array bounds checking [Har77, KW95], improving dependence
analysis [BE95], array privatization [BE95, TP95], and constant propagation [BTC95].

Our constraint propagation and simplification strategy leverages three key program analysis
technologies: control dependence analysis [CFR191], global value numbering based on static single
assignment form [CFR*91, Hav94], and simplification of symbolic integer constraints expressed as
formulae in Presburger arithmetic [KMP*96, Pug92]. (A Presburger formula consists of arbitrary
affine inequalities and equalities of integer variables, together with the logical operations =, V, A,
and the quantifiers 3 and V. For example, given a loop from 1 to N with a stride of 2, the constraints
on the loop index variable i within the loop can be expressed as {3s:t1=2s+1 A 1<i< N}

Below we describe each of the three phases of our control-flow simplification strategy.

Computing Constraints. We compute constraints that arise from conditional branches, loop
bounds, and explicit constraint assertions which specify arbitrary logical expressions in terms of
program variables. At the lowest level, we represent these constraints directly as Presburger for-
mulae, as described earlier. Each variable in an inequality or equality (other than those that are
existentially quantified) represents a value number of one of the following types: (a) an atomic
program variable, (b) non-affine expressions of program variables, or (c) merged values such as the
value for a variable on exit from a loop or conditional branch. -

As an example, consider how we compute constraints enforced by the if statement in the source
fragment below.

i=2=*m
if (i * j +8 .ge. i *7 -4 .and. intmod(i, 4) .eq. 1)

27

In this example, intmod(i,n) =i —n(s div n), so that 0 < intmod(i,n) < n— 1. First, we compute
a value number for the logical expression in the conditional test. In computing the value number
for this expression, 7 gets replaced with 2m everywhere. The first term of the resulting value number
expression then is 2%V, xV; 48 .ge. 14 %V, — 4, where V,, and V; represent the value numbers for
the variables m and j. In translating this value number into a Presburger formula, since Presburger
arithmetic only accommodates affine relations, we collapse the symbolic product V,, * V; into a
single Presburger variable V;,;. The resulting constraint thus becomes {2V,,; + 12 > 14V,,,}.

In the second term, the expression intmod(i,4) .eq. 1 is translated as {Je : 0 < i~ 4e <
3 A (i — 4e) = 1}. After substituting ¢ with 2V,, in this term and combining with the first term’s
constraints, the constraints for the full logical expression become:

{2Vim; +12 > 14V, A (Fe: 0 < 2V, —4e < 3 A 2V, —4de = 1)}

Constraints for a loop are similarly computed by constructing a formula that constrains the
index variable range according to the loop bounds and stride. One restriction is that a symbolic
(i.e., unknown) stride cannot be represented precisely using Presburger formulas because it would
require a product of symbolic terms. Similarly, an intmod or div with a symbolic divisor cannot
be expanded as above, and thus must be treated as a non-affine expression, i.e., represented with a
single Presburger variable. For such cases, we could assume compute a formula representing only
the bounds constraints, which is a conservative assumption for our constraint analysis.

After constraint simplification, we convert a satisfiable constraint formula for a conditional
back into an equivalent Fortran logical expression with Kelly, Pugh, and Rosser’s code generation
algorithm [KPR95]. After code generation, non-affine expressions are then substituted back into
the generated code (e.g., V;,; is replaced by mi*j).

Constraint Propagation. We developed a one-pass algorithm for propagating constraints on
value numbers for program variables throughout a program. A one-pass algorithm because our
value-number-based constraint representation allows us to ignore any constraints that would reach
a statement along a back edge in the control flow graph.® In particular, a variable that is modified
inside a loop is assigned a new value number at the top of the loop that represents the merge of
the value number for the variable entering the loop from the outside, and the value number from
the previous iteration. Constraints on the value number entering the loop from the outside need
not be invalidated inside the loop because all uses of the loop-variant variable in the loop will refer
to one or more different value numbers defined in the body of the loop.

By ignoring constraints along back edges, however, our propagation algorithm cannot directly
compute constraints for iterative values defined in loops. Instead, for simple iterative values (e.g. an
auxiliary induction variable that is a linear function of a loop index variable) our value numbering
package computes symbolic range information which provides us with the appropriate constraints
for these iterative values. We have not found it necessary to compute constraints on more complex
iterative constructs.

Because we can safely ignore constraints along backward control flow edges, we perform our
constraint propagation on the control-dependence graph (CDG), which is a natural representation
for logical constraint propagation. A node n in a control flow graph is control dependent on another
node b if and only if there is a path from b to the exit node that does not execute n, and an outgoing

®The algorithms we present assume that the control flow graph is reducible [Tar74], i.e., for a node within a natural
loop, every path from the root to the node must include the loop header. Handling irreducible graphs correctly is
straightforward: it is only necessary to avoid propagating constraints into or out of any nodes within an irreducible
subgraph.

28

edge from b that (if taken) is guaranteed to execute n. The node b must be a branch node, and the
CDG will include an edge from b to n. A statement inside an ordinary loop (without loop exits)
has a single control dependence predecessor, i.e., the CDG has a single edge from the loop header
node to the statement. Therefore, ordinary loops do not cause cycles in the CDG, and so backward
control flow in ordinary loops is automatically ignored with this representation. Non-trivial back
edges (forming a cycle) in the CDG occur due to constructs such as a jump out of a loop, but these
too can be safely ignored as described above because any references to loop variant values inside
the loop will refer to different value numbers than those entering the loop with constraints along
forward control dependence edges.

The inputs to our algorithm for computing path constraints at each node in the program are
the constraints imposed by conditional branches, loop bounds and strides, and assertions. Separate
outgoing constraints are computed for each type of outgoing edge at a conditional branch (i.e., TRUE
and FALSE edges for if statements and ENTER and FALLTHROUGH edged for loops). We begin by
initializing the incoming and outgoing constraints at each branch to false, and the assertions that
apply to each outgoing CD edge type to true.

Next, we annotate CD edges with constraints from logical assertions. An assertion’s constraints
apply to any statement that is predominated by the assertion as long as it is prior to any redefinition
of any of the variables in the assertion. However, once we translate an assertion expression into
constraints in terms of variable value numbers, the constraints are globally true throughout the
entire program and can be safely applied at any statement. We exploit this property as follows to
treat assertions uniformly with conditional branch expressions. We apply the constraints from an
assertion s to all statements that have the same control dependence relationship with a common
CD parent, even though this includes statements that precede s. In other words, for each statement
b with CD edge b — s of type ¢, we associate the assertion constraints with all CD edges of type
¢t emanating from b. A second phase propagates these assertion constraints forward along the CD
edges to which they apply.

The final phase of the propagation computes incoming and outgoing path constraints at each
conditional branch node. These constraints are computed for each node in a reverse post order
traversal. In reverse-post-order, all control dependence predecessors of a node along forward edges
are visited before the node itself. This evaluation order enables transitive constraints to be propa-
gated along all forward control dependence edges. At each conditional branch node b, we compute
the incoming path constraints that hold when b is reached along any path. We compute these
as a disjunction of the constraints along each incoming control dependence edge. The incoming
constraints along a control dependence edge are simply the intersection of both the outgoing and
assertion constraints from b’s predecessor for that type of edge. Predecessors across back edges will
contribute outgoing constraints of false (the identity element for logical disjunctions) since they
have not been visited yet. As described earlier in this section, it is safe for us to ignore constraints
along CD back edges; our initialization accomplishes this simply. Next, for each CD edge type leav-
ing b, we set the default outgoing path constraints to the incoming path constraints for b. Finally,
depending on b’s node type, we fold the local constraints enforced by b into the different types of
outgoing control dependence edge types as appropriate.

Control-flow Simplification. We use constraints computed at each conditional branch node
to simplify a procedure’s control flow. If the outgoing edge constraints for a loop entry or the
true branch of a conditional are unsatisfiable, we eliminate its code. In the case of an IF, the
entire IF statement is replaced with the statements in the false branch if any. For conditionals,
one of two further simplifications is possible. If the incoming constraints at a logical IF are as

29

do j =1, 64

if (pmyidl <= 2) then
k = 16 * pmyidl + 16
RECV £(1:64, j, k + 1)
!--<< Iterations that read non-local values >>--
COMPUTE £(1:64, j, k)

do k = 16 * pmyidl + 15, 16 * pmyidl + 1, - 1
1--<< Iterations that access only local values >>--
COMPUTE £(1:64, j, k)

if (pmyidi >= 1) then
k = 16 * pmyidl
SEND f(1:64, j, k + 1)

Figure 13: Skeletal SPMD code for Fig. 12 after simplification.

strict as the outgoing constraints on the true branch, the conditional will always evaluate to true
when reached. Therefore, we replace the entire IF statement by statements in the true branch.
Otherwise, we can try to simplify the guard condition by eliminating those constraints in the guard
that are guaranteed by the incoming constraints. For two constraint formulae, f; and f;, the
operation Gist(f, f2) computes a (possibly simpler) set of inequalities f such that fA fo = fi.
Applying the Gist operation to the outgoing constraints given the incoming constraints returns
a conservative approximation of the non-redundant constraints. We then regenerate a new guard
using the simplified constraints.

Effectiveness of Control Flow Simplification. After applying our simplification algorithm,
the code shown in Figure 12 is reduced to the code shown in Figure 13. All of the infeasible
branches (due to unsatisfiable or tautological guards) have been discovered and eliminated. In
fact, numerous other guards (not shown in the figure) that were introduced as part of generating
the communication for the SEND and RECV placeholders shown in figure 12 are also significantly
simplified or eliminated by this process.

Experiments we performed (described in detail elsewhere [MCA98] indicate that control-flow
simplification based on constraint propagation consistently provides substantial improvements in
the number and complexity of conditional branches. Applied to SPMD code generated by dHPF for
a set of benchmarks (Tomcatv, Erlebacher, Jacobi), it eliminated 35%~67% of the if statements in
the generated code, reducing overall code size by 19%-34%. While most of these guards are not in
loops in dHPF-generated code because of our use of aggressive loop optimization techniques such
as splitting and guard lifting, our experiments showed that it added a few percent to performance,
even for these simple programs. For programs with more complex communication, we expect the
impact to be greater. .

It is interesting to note that the final placement of the communication code in Figure 13 achieves
the effect of an optimization known as vector message-pipelining [Tse93]. This optimization moves
pipelined shift communication occuring in boundary iterations of a partitioned loop out of the loop
to eliminate conditionals around the communication statements. This optimization is complex to
implement in a general way using pattern-based techniques because simply lifting communication
out of the loop can lead to deadlock when the loop body requires both forward and reverse pipeline
communication. We safely achieve the effect of vector message pipelining through the combined

30

effects of our CP code generation followed by control-flow simplification. Our code generation is
safe because we place communication in the proper iterations to satisfy the pipeline dependences
and our code generation strategy preserves lexical statement order as it transforms iteration spaces.

3.6 Experimental Evaluation of dHPF Compilation Techniques

A pair of computational fluid dynamics benchmarks from NASA served as driving applications
for the dHPF compiler research. These codes helped focus the project’s research on compiler
analysis and code generation techniques to address the challenges of semi-automatic parallelization
of realistic scientific codes using High Performance Fortran compilers.

As described in a NASA Ames technical report [BHS*95], the NAS benchmarks BT and SP are
two simulated CFD applications that solve systems of equations resulting from an approximately
factored implicit finite-difference discretization of three-dimensional Navier-Stokes equations. The
principal difference between the codes is that BT solves block-tridiagonal systems of 5x5 blocks,
whereas SP solves scalar penta-diagonal systems resulting from full diagonalization of the approx-
imately factored scheme [BHS95]. Both consist of an initialization phase followed by iterative
computations over time steps. In each time step, boundary conditions are first calculated. Then
the right hand sides of the equations are calculated. Next, banded systems are solved in three
computationally-intensive bi-directional sweeps along x, y, and z directions. Finally, flow variables
are updated. Values must be communicated among processors during the setup phase and the
forward and backward sweeps along each dimension.

If the arrays are distributed in block fashion in one or more dimensions, the bi-directional
sweeps along each distributed dimension introduce both serialization and intensive fine-grain com-
munication. To retain a high degree of parallelism and enable coarse-grain communication along all
dimensions, the NPB2.3b2 versions of BT and SP solve these systems using a skewed block distri-
bution called multi-partitioning [BHS*95, Nai92, NNN93]. With multi-partitioning, each processor
handles several disjoint subblocks in the data domain. The subblocks are assigned to the processors
so that there is an even distribution of work among the processors for each directional sweep, and
that each processor has a subblock on which it can compute in each step of the sweep. Thus, the
multi-partitioning scheme maintains good load balance and coarse grained communication.

The serial version of the NPB2.3 suite”, NPB2.3-serial, is intended to be a starting point for the
development of both shared memory and distributed memory versions of these codes for a variety
of hardware platforms, for testing parallelization tools, and also as single processor benchmarks.
The serial versions were derived from the MPI parallel versions of the benchmarks by eliminating
the communication and having one processor compute the entire data domain. The serial versions
of the code are nearly identical to their parallel counterparts, except for the lack of data domain
partitioning and explicit communication. Therefore, the MPI version provides an excellent basis
for evaluating the performance of compiler parallelization of the serial benchmarks. Both the
hand-written and compiler-generated codes use non-blocking send/recv for communication.

We studied the serial versions of the NAS application benchmarks to understand the challenges
that arise in real-world applications and develop compiler techniques to address them. Our work
with these benchmarks was a key motivator behind our work on computation partition selection for
loop nests that use privatizable arrays, commmunication-sensitive loop distribution (to eliminate
inner-loop communication without excessively sacrificing cache locality), interprocedural selection
of computation partitions, and data availability analysis to avoid excess communication for values
computed but not owned by the local processor.

"The NAS benchmarks are available from http://science.nas.nasa.gov/Software/NPB.

31

We evaluated performance of both the dHPF compiler itself and the code it generates. We com-
pared the code generated by the dHPF compiler with hand-written MPI and with code generated
by the PGI pghpf compiler [AJMCY98]. Starting with minimally modified versions of the NAS2.3
serial codes plus HPF directives, our techniques are able to achieve performance within 15% of the
hand-written MPI code for BT and within 21% for SP on 25 processors. The code generated by
the dHPF compiler also outperforms the code generated by the PGHPF compiler for most cases,
even though the HPF code used with dHPF was largely identical to the original serial version of
the benchmarks. Compile-times for large application code are somewhat high but we believe it is
acceptable and can be substantially improved.

Section 3.7 describes ongoing work to obtain significantly better scalability and performance
by having the dHPF compiler generate code using a multipartitioning strategy for partitioning
data and computation. The experiments described below study codes using standard HPF block
partitionings.

3.6.1 Compiler Performance

We assessed the performance of the dHPF compiler in terms of the detailed costs of applying
the set-based compilation techniques described in previous sections. The benchmarks we use are
TOMCATV—a SPEC92 benchmark that performs mesh generation, and a serial verion of NAS
SP. Both programs perform stencil-based computations on multidimensional arrays.

The version of TOMCATYV we studied is simply the Fortran 77 code for the SPEC92 benchmark
with HPF directives to specify a (BLOCK, *) distribution of the arrays over a 1D processor grid.
With our directives added, this benchmark has 228 lines and a single procedure. Compared to
TOMCATYV, the SP application benchmark is more than an order of magnitude larger and the
computation is considerably more complex. SP has much larger and non-uniform loop nests, pro-
cedure calls within parallel loops, and makes liberal use of privatizable arrays whereas TOMCATV
uses only privatizable scalars. We developed an HPF version of SP using minimal modifications
to the serial Fortran 77 code from the NPB2.3-serial release. We specified block distributions in
the y and z spatial dimensions of the program’s 3D and 4D arrays. Our modified version of the
source is 3502 lines, compared to the 3382 lines in the NPB2.3-serial release. The application has
30 procedures.

We used a version of dHPF compiled with =02 optimization and measured compile times on
a 250MHz UltraSparc workstation. We used Rational Software’s Quantify™ utility to obtain
an execution profile. For TOMCATYV, the number of processors was left unspecified at compile-
time. For SP, we considered two variants: SP-4 used a fixed 2x2 processor array, while SP-sym
left the total number unspecified, using a 2 x (number _of_processors()/2) processor array. For
both benchmarks, the compiler exploited all of the optimizations described in previous sections,
including non-owner-computes computation partitionings for some statements to reduce the number
and frequency of communication operations. '

Table 1 shows the wall-clock time in seconds for compiling each of these benchmark versions
and a breakdown of total execution time spent in key phases of dHPF, including each of the major
integer-set optimizations. (The final optimization of generated code does not use integer-set-based
operations.) The nesting of phases is shown by indentation in the first column. The numbers do
not sum to 100% because percentages shown for indented phases are merely refinements of their
enclosing phase. Although the benchmarks are quite different in size and complexity, the breakdown
of compilation time for them is remarkably consistent. None of the phases is especially dominant
in compile time, although SP has a somewhat high cost for communication generation because
of a huge number number of communications (even after a high degree of coalescing), some with

32

| Breakdown of compilation time |

application | SP-4 [SP-sym | T-sym |
total compilation wall-clock time | 1145s 1073s 28s
interprocedural analysis 1.2% 14% | 1.5%
module compilation 97.9% | 97.8% | 97.1%
partitioning computation 145% | 11.3% | 16.1%
loop splitting 6.4% 2.0% | 3.7%
loop bounds reduction 5.6% 6.7% | 6.1%
communication generation 31.4% | 34.6% | 28.1%
loops to compute msg sizes 129% | 13.4% | 7.0%
loops over comm partners 12.8% | 14.1% | 10.4%
check if msg is contiguous 1.3% 1.9% | 2.6%
check if msg is rect section 1.2% 14% | 1.4%
opt of generated code 28.1% | 28.9% | 21.3%
mult mappings code generation | 26.4% | 23.9% | 10.5%

Table 1: Breakdown of dHPF compilation time.

complex patterns. Based on these results, we would anticipate that other programs would have a
similar cost breakdown although the distribution of compilation effort would differ depending on
the number and complexity of loops in a routine, the number of communication events, and the
shape of the communication sets.

At the bottom of the table, we note the time spent in Kelly, Pugh and Rosser’s multiple
mappings code generation operation which we use to synthesize loops that enumerate iteration or
data sets. This algorithm accounts for virtually all of the cost of the set framework. Most of this
time is spent in simplifying Presburger formulae representing integer sets and mappings. These
numbers show that the integer-set framework is not a dominant cost in compile-time, even for fairly
large and complex codes such as SP. Finally, the table shows that there is no significant additional
cost to compiling for a symbolic number of processors vs. a known (fixed) number. SP-sym is in
fact faster than SP-4 because the compiler performs more aggressive loop-splitting in the latter,
which leads to more complex sets and correspondingly higher compile-time cost.

The absolute compile-times for SP are somewhat high but (we believe) acceptable for a research
compiler where efficiency in the implementation has not been a primary goal. There are opportu-
nities for significant improvements. Approximately 30% of compilation time is spent on generating
custom inline code for counting, packing and unpacking buffers. While such custom code can be
important for complex communication patterns, for the vast majority of simple patterns such as
a shift communications, invoking a run-time library operation would not be more expensive, and
would largely eliminate the communication generation cost. We also spend nearly 30% in a post-
pass optimizing the SPMD code we generate, which we believe can be largely eliminated through
an algorithmic improvement.

3.6.2 Performance of dHPF-generated code

We compared the performance of compiler-parallelized versions of the NAS benchmarks SP and
BT against the hand-written MPI versions of the benchmarks from the NPB2.3b2 release. The
compiler-generated parallel codes for these benchmarks were produced by dHPF and pghpf (a
commercial product from the Portland Group). We used different HPF versions of the codes for
the pghpf and the dHPF compilers. In particular, each compiler was applied to HPF codes created

33

by the compiler’s developers to best exploit its compiler’s capabilities. For the dHPF compiler,
we created HPF versions of the SP and BT benchmarks by making small modifications to the
serial Fortran 77 versions of the benchmarks in the NPB2.3-serial release. We modified the code
primarily to add HPF directives and to interchange a few loops to increase the granularity of the
parallelization. (More detailed descriptions of these modifications appear below.) With the pghpf
compiler, we used HPF versions of the SP and BT benchmarks that were developed by PGI. The
PGI HPF implementations are derived from an earlier version of the NAS parallel benchmarks
written in Fortran 77 using explicit message-passing communication. PGI rewrote these into a
Fortran 90 style HPF implementation in which communication is implicit. (The PGI HPF versions
were developed before the NPB2.3-serial release was available.)

The experimental platform for our measurements was an IBM SP2 running AIX 4.1.5. All
experiments were submitted using IBM’s poe under control of LoadLeveler 3.0 on a block of 32
120Mz P2SC ”thin” nodes that was managed as a single-user queue. Loadleveler was configured
to only run one process per processor at any time. PGl-written HPF codes were compiled using
pghpf version 2.2. All codes - the hand-written NPB MPI codes and the codes generated by
pghpf and dHPF - were compiled with IBM’s xIf Fortran compiler with command line options
-03 -qarch=pwr2 -qtune=pwr2 -bmaxdata:0x60000000. All codes were linked against the IBM
MPI user space communication library with communication subsystem interrupts enabled during
execution.

Our principal performance comparisons are on 4, 9, 16, and 25 processor configurations because
the hand-written codes in the NAS 2.3b2 release require a square number of processors. We also
present the performance for PGI and dHPF generated code on 2, 8, 27 and 32 processors for
reference. Single-processor measurements (and in some cases 2- and 4-processor measurements)
were not possible because the per-node memory requirements exceeded the available node memory
on our system.

In the following subsections, we compare the performance of the hand-written MPI against
the compiler-generated code for SP and BT. For each of the benchmarks, we present data for
Class A and Class B problem sizes (as defined by the NAS 2.0 benchmarking standards). We
present the raw execution times for each version and data size of the benchmarks along with two
derived metrics: relative speedup®, and relative efficiency®. Since we were unable to measure single
processor execution times, we lack the basis for true speedup measurements. Instead, based on our
experience with the sequential and hand-coded MPI versions on SP2 ”wide” nodes that contain more
memory, we assume that the speedup of the 4-processor version of the hand-coded MPI programs
is perfect (which is approximately true). All speedup numbers we present are computed relative
to the time of the 4-processor hand-coded versions. Our relative efficiency metric compares the
relative speedup of the dHPF and pghpf generated codes against the speedups of the corresponding
hand-written versions. This metric directly measures how much of the performance of the hand-
coded benchmarks is achieved by the compiler-parallelized HPF codes. As described above, the
hand-written MPI parallelizations of both the SP and BT benchmarks use a skewed block data
distribution known as multi-partitioning. This partitioning ensures that each processor has a
subblock to compute at each step of a bi-directional line-sweep along any spatial dimensions. This
leads to high efficiency because each processor begins working on a subblock immediately as a sweep
begins without needing to wait for partial results from another processor. The multi-partitioning
distribution is not expressible in HPF, and therefore the HPF implementations incur added costs
in communication, loss of parallelism, or both.

8Speedups are relative to the 4-processor hand-written code for Class A and 16-processor hand-written code for
Class B, which are assumed here to have perfect speedup.
®Relative efficiency is computed by comparing speedup of dHPF generated code with its hand-written counterpart.

34

Instead of multi-partitioning, the PGI and Rice HPF implementations of SP and BT use block
distributions. We describe the key features of the two HPF implementations here to provide a
basis for understanding the compiler-based parallelization approach used by the dHPF and pghpf
compiler versions and its overall performance.

3.6.3 SP

In developing the Rice HPF implementation of SP from the NPB2.3-serial release, our changes to
the serial code amounted to 147 of 3152 lines or 4.7%. The breakdown of our key changes is as
follows:

e Removed array dimension (cache) padding for arrays u, us, vs, ws, forcing, gs, rho.i, rhs,
1hs, square, ainv, and speed. The cache padding interfered with even distribution of work
in the HPF program. Instead, the JHPF compiler automatically pads arrays in the generated
code to make all array dimension sizes odd numbers.

e Eliminated the work_id common block. Variables cv, rhon, rhos, rhoq, cuf, q, ue, buf
were instead declared as local variables where needed in the lhsx, 1hsy, 1hsz and exact_rhs

subroutines.

e Added HPF data layout directives to specify a BLOCK,BLOCK distribution of the common
arrays (u, us, vs, ws, forcing, gs, rho_i, rhs, lhs, square, ainv, speed) in the y and z
spatial dimensions.

e Added 6 HPF INDEPENDENT NEW directives. In the lhsx, lhsy, and lhsz subroutines, a
NEW directive was used to identify two array as privatizable in the first loop nest. In the
exact_rhs subroutine, three NEW directives were used to specify cuf, buf, ue, q, and dtemp
as privatizable in each of three loop nests.

e In the compute_rhs subroutine, we added an outer one-trip loop along with an INDEPENDENT
LOCALIZE directive (a dHPF extension to HPF) for the rho_i, square, gs, us, s, and vs
arrays. This directive has the effect of eliminating communication inside a loop for the
specified variables by partially replicating computation of these variables inside the loop so
that each element of these arrays will be computed on each processor on which it is used.

e Inlined 2 calls to exact_solution in subroutine exact.rhs where our interprocedural com-
putation partitioning analysis was (currently) incapable of identifying that a computation
producing a result in a privatizable array should be treated completely parallel.

e Interchanged loops to increase the granularity of computation inside loops with carried data
dependences to increase the granularity of computation and communication for two loop nests
in subroutine y_solve and 4 loop nests in subroutine z_solve.

The HPF INDEPENDENT directives used were not for the purpose of identifying parallel loops
because dHPF automatically detects parallelism in the original sequential Fortran 77 loops. The
only reason HPF INDEPENDENT directives were added to some loops in the code was to specify
privatizable variables with the NEW directive and variables suitable for partial replication of com-
putation with the LOCALIZE directive. With the data partitionings in the y and z dimensions,
only partial parallelism is possible in the y and z line solves because of the processor-crossing data
dependences. The dHPF compiler exploits wavefront parallelism in these solves using non-owner
computes computation partitions for some statements; this leads to wavefront computation that

35

Execution Time (seconds) Relative Speedup Relative Efficiency

P hand dHPF PCT hand dHPF PGI dHPF PGI
A B | A B A | B A | B A | B A | B K[B|AJ[B
2 - -] 820 - 1 1213 - - - 2.12 - 1.43 - - - - -
4 || 436 | 2094 | 454 | 1935 | 695 | 2312 4 4] 384 432 250 | 362 | 96| 11] .63 .01
8 - | 259 | 1086 | 382 | 1252 -| 673 771 | 456 | 669 | - | -| -} -

9 209 783 | 273 906 381 | 1296 8.34 | 10.69 6.38 9.24 4.57 6.46 .76 | .86 | .55 | .77
16 132 466 | 198 560 222 754 13.21 | 17.97 8.81 | 14.95 7.85 | 11.10 || .67 | .83 | .59 | .62
25 88 308 | 149 389 198 638 || 19.82 | 27.19 | 11.70 | 21.52 881 (1312 || .59 | .79 | 44 | .48
32 - - | 127 381 136 508 - - { 13.73 | 21.98 | 12.82 | 16.48 - - - -

Table 2: Comparison between hand-written MPI, dHPF and pghpf for SP (- Numbers are not
available because the hand-written code requires a square number of processors, — Numbers are not
available because of insufficient per-node memory.)

includes pipelined writebacks of non-owned data. dHPF applies coarse-grain pipelining within the
wavefront to reduce the ratio of communication to computation. As with the hand-written versions,
the problem size and processor grid organization was compiled into the program separately for each
instance with dHPF.

The PGI HPF implementation of SP for pghpf is 4508 lines, 43% larger than the NPB2.3-serial
version. The PGI implementation uses a 1D block distribution of the principal 3D arrays along
the z spatial dimension for all but the line solve in the z direction. Before the line solve along
the z axis, the data for the rsd and u arrays is copied into new variables that are partitioned
along the y spatial dimension instead. This copy operation involves transposing the data. Next,
the z sweep is performed locally. Finally, the data is transposed back. The PGI implementation
avoids the use of privatizable arrays found in the NAS SP implementations in subroutines lhsy,
lhsz, and lhsx. Instead, in the PGI code several loops were carefully rewritten using statement
alignment transformations so that intermediate results could be maintained in privatizable scalars
instead of privatizable arrays. Applying these transformations to these loops required peeling two
leading iterations, two trailing iterations, and writing custom code for each of the peeled iterations.
Such transformations are tedious for users to perform. Even more important, in general it is
not possible to always eliminate privatizable arrays with alignment transformations. Handling
privatizable arrays efficiently in such cases was a key motivation for the computation partitioning
for array privatizables. For the PGI code, only a single version of the executable was used for
all experiments as per the methodology used for reporting PGI’s official NAS parallel benchmark
measurements.

Table 2 compares the performance of the hand-written MPI code with the dHPF-generated
code and the PGI generated code for both class A and class B problem sizes. For SP, the class A
problem is 643, and the class B problem size is 1023. In all cases, the speedups and efficiencies are
better for all three implementations on the class B problem sizes. For the larger problem size, the
communication overhead becomes less significant in comparison to the computational cost which
leads to better scalability. We look to the relative efficiency measures to evaluate how closely the
PGI and dHPF-generated codes approximate hand-coded performance. These measures show that
the dHPF compiler is generating computational code that is quite efficient since, on 4 processors,
it achieves within 4% of the efficiency of the hand-written MPI for the class A problem size, and
is 10% better for the class B problem size. On the class A problem size with the PGI compiler,
there is a substantial gap between its efficiency and hand-coded performance. However, this gap
narrows substantially for the class B problem size. In comparing the performance with dHPF and
the PGI compilers, the efficiency of the dHPF-generated code was uniformly better for both class

36

[@] overview
OverVIEW

(11> s
10> TiE 4 f s

8 ;:;‘1

V4

X

s I 1

3> R e 7 AN
2 1 X {?5‘) I) |
0 W Ll P4l \ 1 A g | {

e
b

-

1114,7208 TIME (msec) 1514,7208

Figure 14: Space-time diagram of hand-coded MPI for SP (16 processors).

overview

9421,6354 TIME (msec) 11621,6354 [

Figure 15: Space-time diagram of dHPF-generated MPI for NAS SP application benchmark (16
processors).

A and class B problem sizes. As the number of processors is scaled for a fixed problem size, the
advantages of the multipartitioning in the hand-coded version become more pronounced. For 25
processors, the efficiencies of both of the HPF implementations drops. However, the dHPF code is
more efficient by a margin of 15% for the class A problem size and this gap increases to 31% for
the class B problem size.

To illustrate the performance benefits provided by multipartitioning in the hand-written MPI
code, Figures 14 and 15 show space-time diagrams of 16-processor execution traces from AIMS
toolkit [YSM95] for a single timestep of for the hand-coded and dHPF-generated codes respectively.
Each row represents a processor’s activity. Solid green bars indicate computation. Blue lines show
individual messages between processors. White space in a processor’s row indicates idle time.

At the left of Figure 14, the first 4 bands of blue correspond to the communication in the z_solve
phase. The next blue band shows the communication in copy faces which obtains all data needed
for compute_rhs. The next 4 bands of communication correspond to x_solve, and the 4 after that
to y_solve. The right of the figure shows the z_solve phase for the next timestep. Figure 14 shows
that the hand-written code has nearly perfect load balance and very low communication overhead
using the multi-partitioning.

The leftmost 40% of Figure 15 shows the communication for the y_solve phase. The central
portion shows the z_solve communication. The wide band about 70% across the figure is the
communication for compute_rhs, which is largely resembles the communication in copy_faces in

37

the hand-coded version. The long bands of computation near the right side of the figure belong to
compute rhs and x_solve, which is a totally local computation for the 2D data distribution along
the y and z dimensions. Clearly, the largest loss of efficiency is in the wavefront computations of the
y-solve and z.solve phases. In each of the phases, there are two forward pipelined computations,
and two reverse pipelines. There are several notable inefficiencies evident in this version of the
dHPF-generated code. First, it is clear that the pipelines are at different granularities. The leftmost
pipeline is quite skewed: processor 0 finishes its work before processor 2 begins, and similarly for
each of the groupings of 4 processors. For this pipeline, the granularity is clearly too large, leading
to a loss of parallelism. Unfortunately, dHPF currently applies a uniform coarse-grain pipelining
granularity to all the loop nests in a program. An independent granularity selection for each
loop nest would lead to superior results. Second, between the two forward pipelines in y_solve,
communication occurs in the direction opposite the flow of the pipeline which causes a considerable
delay before the start-up phase of the second pipeline. This communication is unnecessary and
will in the future be eliminated by a less conservative version of our data availability analysis.
Overall, however, while the pipeline granularity and performance can be adjusted, it is clear that
multipartitioning provides a far better alternative.

3.64 BT

The Rice HPF version of BT is derived from the NPB2.3-serial release. Our total changes to the
serial code amounted to 226 of 3813 lines which is about 5.9%. The changes we made include:

¢ Removed array dimension(cache) padding for array u, us, vs, ws, forcing, gs, rho.i, rhs,
lhs, square, ainv, and speed. The padding interfered with even distribution of work in the
HPF program. Automatic padding of the generated code is performed by the dHPF compiler.

e Eliminated the work_1d common block. Variables cv, cuf, q, ue, buf were instead declared
as local variables where needed in the exact.rhs subroutine.

e Added HPF data layout directives to specify a 2D or 3D BLOCK distribution of the common
arrays (u, us, vs, ws, fjac, njac, forcing, gs, rho.i, rhs, lhs, square, ainv, speed) in the
x, y and z spatial dimensions.

o Added 9 HPF INDEPENDENT NEW directives. In the x_solve_cell, y-solve_cell, and z_solve_cell

subroutines, NEW directives were used to introduce two privatizable arrays as temporary vari-
ables in two loop nests. In the exact_rhs subroutine, three NEW directives were used to specify
cuf,buf,ue,q, and dtemp as privatizable in each of three loop nests.

e In the compute_rhs subroutine, we added an outer one-trip loop along with an INDEPENDENT
LOCALIZE directive (a dHPF extension to HPF) for the rho_i, square, gs, us, ws, and
vs arrays. This directive has the effect of eliminating communication inside a loop for the
specified variables by partially replicating computation of these variables inside the loop so
that each element of these arrays will be computed on each processor on which it is used.

e Inlined 3 calls to exact_solution in exact_rhs where our interprocedural computation par-
titioning analysis was (currently) incapable of identifying that a computation producing a
result in a privatizable array should be treated completely parallel.

Performance data for both generated codes by dHPF and PGI, and the hand-written code are
shown in Table 3. The format of the table is similar to that of Table 2 for SP. For all three versions,

38

Execution Time (seconds) Relative Speedup Relative Efficiency

P hand dHPF PGI hand dHPF PGI dHPF PGI
A B |[AJ[B]|A]B A B A | B A | B A B | A B
Z [[650] -]609] -]59%] -) | 427 | 4.4t — 107] -] Li0] -
8 | - |s22| -|38| - - - | sor - | 818 - -l - - -
o |[304| -|334{ -|315]| -| 856 - | 779 - | 826 -l e | -] 98| -
16 181 | 715 | 182 | 727 | 171 | 814 14.33 16 | 14.28 | 15.75 | 15.21 | 14.06 1.00 | 98 | 1.06 | .88
25 117 | 461 | 143 | 534 | 151 | 632 22.17 | 24.85 | 18.21 | 21.44 | 17.25 | 18.11 .82 | .86 78 | .73
27 - - | 137 | 451 |"151 | 503 - - | 18.99 | 25.40 | 17.26 | 22.74 - - - -
32 - - | 108 | 401 | 102 | 508 - - | 24.01 | 28.54 | 25.49 | 22.52 - - - -

Table 3: Comparison between hand-written MPI vs. dHPF and PGI génerated code for BT (-
Numbers are not available because the hand-written code requires a square number of processors,
— Numbers are not available because of insufficient per-node memory.)

OverVIEW

rard

o di

110 FAm' MY
1 '”-é& PSSR

TIME (msec> 3143.5897

2143,5897

Figure 16: Space-time diagram of hand-coded MPI for NAS BT application benchmark (16 pro-
Cessors).

we include data for both Class A and B problem sizes, which are 64x64x64 and 102x102x102
respectively. All speedups for class A are relative to to the 4-processor hand-tuned version, while
those for class B are relative to the 16-processor hand-tuned version. As the data shows, the
hand-tuned code demonstrated almost linear speedup up until 25 processors, Our code performs
extremely well up until 16 processors for both Class A and B. PGI code has excellent performance
for Class A up until 16 processors. Our code outperforms the PGI code for Class B executions and
shows better scalability on large number of processors. Efficiency and speedup start to decline from
25 processors for both our code and PGI code because the the wavefront parallelism that we realize
for the code using a HPF 2D or 3D block data distribution and the 3D transpose that PGI uses
have significant overheads, particularly at higher numbers of processors. As in SP, the sophisticated
multipartitioning data distribution strategy used in the hand-tuned code [9] achieves much better
scalability, but unfortunately is not expressible in HPF. This can be seen from Figures 16 and 17,
which show space-time diagrams of the execution of the hand-written MPI code and the dHPF-
generated code for BT respectively. As with SP, the hand-written code shows excellent load-balance
and very low communication overhead. The dHPF-generated code is also much more efficient for
BT than for SP, but still has significantly higher overheads due to pipelining than the hand-written
MPL.

39

OverVIEW

= e |

LLLLILILLLLLELTY Il]

[
— e ' it
S e
=i S

¥ 2593.3673 TIME (msec) 3893,3673 |7

o vt |

Figure 17: Space-time diagram of dHPF-generated MPI for NAS BT application benchmark (16
Processors).

3.7 Compiler-Support for Advanced Partitionings

One important class of tightly-coupled computations not well supported by the HPF and OpenMP
partitioning models are those that use line sweeps to solve one-dimensional recurrences along each
dimension of a multi-dimensional discretized physical domain. Alternating Direction Implicit (ADI)
integration is a common technique for solving partial differential equations that uses this solution
style [NNN93]. Two of the NAS parallel benchmarks [BHS*95], SP and BT, use ADI integration to
solve the Navier-Stokes equation in three dimensions. Fractional step methods and other solution
techniques that use line sweeps are described by Naik et al. [NNN93]. For this class of computations,
applying a standard block partitioning to any of the spatial dimensions is problematic—recurrences
along the partitioned dimension partially serialize execution.

For the parallelizations of SP and BT as described in the previous section, the dHPF compiler
used coarse-grain pipelining. Figure 15 shows a 16-processor execution trace for NAS SP using this
approach. For line-sweep computations, block partitionings introduce serialization that coarse-grain
pipelining can only partially overcome. Commercial HPF compilers such as PGI’s pghpf [BMN*95]
even lack support for coarse-grain pipelining. To support the NAS benchmarks, PGI reworked
variants of these codes to use full transposes between directional sweeps. Neither coarse-grain
pipelining, nor transpose provides ideal scalability.

Hand-coded message-passing versions of the NAS SP and BT benchmarks (version NPB2.3b2)
use a sophisticated data distribution known as “multipartitioning” for partitioning multidimen-
sional arrays. Its main properties are that for a sweep along any dimension of an array, (1) all
processors are active in each step of the computation, (2) there is perfect load-balance, and (3)
the execution requires only coarse-grain communication. Multipartitioning achieves 'this balance
by partitioning data into pﬁ tiles, where p is the number of processors and d is the number of
partitioned array dimensions. Each processor is assigned plel tiles along diagonals through each of
the partitioned dimensions. Figure 18 shows a 3D multipartitioning distribution for 16 processors;
the number in each tile represents the processor that owns the block.

For an n-dimensional multipartitioning on p processors, the expression pn_l-‘T must be an integer.
Thus, a 3D multipartitioning requires the number of processors to be a perfect square. However,
multipartitioning can be applied to any two dimensions of an n-dimensional array allowing use of
an arbitrary number of processors.

Multipartitioning offers two key advantages for parallelizing line sweep computations. First,
a multipartitioned distribution of k-dimensional data arrays ensures that for each partitioned di-

40

6| 10] 14]2

7|11} 15]3

Figure 18: 3D Multipartitioning on 16 processors.

mension, each processor owns a data block in each of the k — 1 dimensional slabs defined by the
partitioning. Computation within a slab is fully parallel, so line sweep computations can be paral-
lelized effectively using this partitioning. Figure 14 shows a 16-processor execution trace that shows
the balanced parallelism achieved using multipartitioning for NAS SP. Second, this parallelization
only requires coarse-grain communication, unlike pipelining. For these reasons, multipartitioning
can provide better scalability and speedup on large systems [Van93].

More generally, many data and computation partitioning problems partitioning a domain into
blocks with one or more blocks per processor. We refer to such techniques collectively as overparti-
tioning. Examples in the literature include virtual processor approaches for cyclic and block-cyclic
distributions [AL93, GKHS96], support for dynamic and non-uniform computation partitioning of
data-parallel programs on heterogeneous systems [NQ93], and support for managing computation
on out-of-core arrays [BCK*95].

Here we describe our design and implementation of multipartitioning in the Rice dHPF compiler.
This implementation was structured to form the basis for a general overpartitioning framework.
We describe several compiler and runtime techniques necessary to generate code for this class of
distributions. Our implementation performs the analysis and code generation necessary to realize
multipartitioning computation partitionings; however aggregation of messages further communica-
tion optimization will be necessary to achieve the scalability of hand-coded implementations.

3.7.1 Multipartitioning in dHPF

To specify that multipartitioning should be used to distribute a multidimensional array, we extended
the dHPF compiler to accept the MULTI keyword as a distribution specifier.

Because multipartitioning involves distributing each partitioned array dimension across all of
the processors, our implementation enforces several restrictions. First, an HPF processor array
onto which a multipartitioned distribution is mapped must be a one-dimensional array containing
all the processors. Second, if the MULTI distribution specifier is used for an array or template,
neither BLOCK nor CYCLIC can be used in the same distribution. Finally, the MULTI keyword
must be used in at least two dimensions of a distribution. :

Virtual Processors The integer set analysis framework used by dHPF [AMC98b] supports

BLOCK npartitionings of arbitrary size onto a symbolic number of processors. To support mul-
tipartitioning we extended this model to treat each tile in a multipartitioned array as a block in a

41

BLOCK partitioned array, mapped to an array of pd_iT virtual processors.

Implementing this virtual processor model, requires mapping between virtual and physical pro-
cessors. Each virtual processor is identified by its tile position indices, a d-dimensional tuple repre-
senting its coordinates in the virtual processor array (in column-major order). We use these indices
to index into a wirtual to physical processor mapping. When a tile needs data from another tile,
the other tile’s coordinates are computed from the data indices, the virtual to physical processor
mapping is then used to determine which physical processor owns the required data.

Memory Model A multipartitioned distribution of an array, requires the allocation of plel
tiles per physical processor. Each tile’s data is contiguous. Each tile is extended as necessary with
overlap areas [Ger90] to facilitate access to data received from neighboring tiles. On each processor,
all local tiles for a multipartitioned array are dynamically allocated as contiguous data. Storage is
indexed in column-major order, where the leftmost dimensions are the original array dimensions
and a new rightmost dimension corresponds to the local tile indez.

Code Generation Code generation for multipartitioning is a generalization of code generation
for BLOCK partitioning. Within dHPF the integer set framework is used to generate code for
blocks of arbitrary but uniform size at arbitrary positions. We use the generated computational
and communications code for such a block, as the kernel code for each tile of the multipartitioned
distribution.

All communication and computation performed for a tile is defined in terms of the data mapped
to that tile. Since more than one virtual processor is assigned to each physical processor, the
tile position indices have to be adjusted on each physical processor as it cycles through its tiles.
Computation for a loop nest occurs by having each processor perform the computations for each
of its owned tiles.

To generate code that handles multiple tiles per processor, we wrap a tiling loop that iterates
over all the tiles assigned to a physical processor around the kernel code for a tile. The order in which
a physical processor must iterate over its tiles, is determined by the data dependences present in the
loop nest. Since multipartitioning is a multidimensional distribution, the data dimension in which
the outermost dependence is carried is the one that determines the iteration sequence. The order
in which each processor iterates over its tiles corresponds to the loop direction and must satisfy the
loop-carried dependences present in the loop body. (If there are no loop-carried dependences then
the iteration sequence follows the outermost loop index that indexes a multipartitioned dimension
within the array.) As shown in Figure 18, the tiles for a processor fall along a diagonal which spans
the d dimensions of the array. We use modular arithmetic (modulo number of tiles) to compute
the following tile indices from the values of the current ones. The value of the dependence-carrying
loop index is what is used to index into the tile dimension of the array. The iteration must begin
with the first tile at the appropriate end of the selected dimension.

Communication Model Communication generation for multipartitioned distributions, is a di-
rect extension of the model used to generate communication events for BLOCK distributions. For
communication loop nests, we applied the same strategy we used for computational loop nests: we
extend the basic single tile instance communications loop kernel to support multiple tiles.

For communication that is vectorized outside of all computational loops over data dimensions,
we generate a simple tile loop around the communications kernel, applying the same sort of adjust-
ments described for computational loops.

42

For communication pinned inside a loop by a data dependence, it would be incorrect to wrap the
communication event in a tiling loop because dependences would not be satisfied. Code generation
for computational loops will have wrapped a tile loop outside the dependence-carrying loop. Thus,
no additional tile loop is required for the inner communications kernel code.

In general, a single communication event for a tile may require interaction with multiple com-
munication partners. To manage these interactions, multipartitioning requires a flexible buffering
scheme, that supports dynamic allocation of multiple buffers per communication event, for each
tile.

Since each physical processor performs communication on behalf of each of its tiles, care must
be taken to ensure that messages received are delivered to the appropriate tile. To avoid mixing
up messages, we use a message tagging scheme, which uniquely identifies the originating tile and
communication event. Each message is labeled with a unique tag consisting of an integer identifying
the communication event plus another integer that identifies the originating tile in terms of a unique
global number computed from its tile position indices.

Runtime Support Our main runtime components required to support the multipartitioned code
generated from the dHPF compiler are a function to compute virtual-to-physical processor map-
pings and support for managing multiple dynamic buffers. Each multipartitioned template distri-
bution requires a different virtual-to-physical processor map. We associate maps with their cor-
responding template runtime descriptor. These maps are computed once, at the start of program
execution, with very little overhead, since their sizes depend on the number of tiles.

3.7.2 Evaluation of Compiler-Support for Multipartitioning

Here we briefly describe a preliminary evaluation of prototype multipartitioning support in dHPF
using the NAS SP application benchmark to compare a hand-coded MPI implementation using
multipartitioning to dHPF-generated code that uses multipartitioning to parallelize a serial version
of the benchmark to which data layout directives have been added.

Our scalability experiments were performed on an SGI Origin 2000 node of ASCI Blue Mountain
(128 250MHz R10000, 32KB (1)/32KB (D) L1, 4MB L2 (unified)) using 1, 4, 9, 16 and 25 processors
for each execution instance.

From a compiler’s point of view, the NAS SP benchmark presents a significant challenge for
achieving high performance. To generate efficient parallel code from a lightly modified serial version
of this benchmark with the BLOCK distribution, requires the use of several advanced compilation
strategies [AJMCY?98] including non-owner-computes computation partitionings, complex patterns
of computation replication to reduce communication for privatizable arrays and other loop indepen-
dent data reuse, aggressive communication coalescing, coarse grain pipelining, and interprocedural
computation partitioning. These optimizations together yield reasonably good performance even
with BLOCK partitioning, within about 20% of the handcoded message-passing version on 32
processors, where the number of processors is a known compile-time constant. The scalability of
the compiler-generated code using coarse-grain pipelining (as described in the previous section)
falls substantially short of the handcoded version because of inherent serialization induced by the
BLOCK partitioning.

Figure 19 shows a 16-processor parallel execution trace for one iteration in the steady-state
section of the NAS SP class ’A’ execution, for the multipartitioned code generated by the dHPF
compiler. By comparing this execution trace with that of the hand-coded MPI version shown in
Figure 14, one can see that dHPF-generated code achieves the same qualitative parallelization.

43

$3061,1814 TIHE (msec) 54061,1814 7

Figure 19: dHPF-generated NAS SP using 3D multi-
partitioning.

Speedups: NAS SP Class 'A’
30 T T

T
dHPF 3D MULT] -e—.-
MPI 3D hand-coded -+

25 - L E

10 |

s 2
o 5 10 15 20 25
Number of Processors

Figure 20: Speedups for MPI hand-coded multipar-
titioning and dHPF-generated multipartitioning ver-
sions of NAS SP benchmark (class A).

Comparing this multipartitioned version with the coarse-grain pipelining code for a BLOCK distri-
bution shown in Figure 15, it is clear that the new compiler-generated multipartitioning code has
less serialization. ,

Despite the fact that the dynamic communication patterns of our compiler-generated paral-
lelization using multipartitioning resemble those of the hand-coded parallelization, there is still
an important performance gap between our dHPF-generated code and the hand-coded MPL. Fig-
ure 20 shows speedup measurements taken in June 2000 on an SGI Origin 2000 system equipped
with MIPS R10000 processors. All speedups shown in the ﬁgﬁre are relative to the performance of
the sequential code for SP from the NAS 2.3-serial distribution.

The most significant difference between the performance of the codes is that the dHPF-generated
code does not yet have the same scalability as the hand-generated code. The performance gap is
primarily due to insufficient aggregation of communication. First, in the dHPF-generated code,
communication that has been fully vectorized outside all loops over spatial dimensions is performed
by each processor one tile at a time rather than once for all tiles. For 3D multipartitioning, when
shifting array values along a spatial dimension this effect causes O(p%) messages instead of the
O(1) messages in the hand-coded multipartitioning. Enhancements to dHPF’s communication
generation and run-time libraries are underway to enable messages to be sent on a per-processor
rather than a per-tile basis. Second, in the dHPF-generated code, separate messages are used to

44

[Metric || Hand-MPI | dHPF-MPT |

cycles .94 1.22
grad. instr. .94 1.07
grad. loads. .92 .96
L1 misses .95 .98
L2 misses 94 1.04
prefetches 1.02 .08

Table 4: Ratio of performance metrics for single-processor executions of parallelized versions of the
NAS SP benchmark relative to those for the original sequential code.

move data for each array that must be communicated. Such messages should be coalesced. Finally,
communication for references involved in carried data dependences along a partitioned dimension
may not be fully fused when the references require communication in different sets of iterations.

In January 2000, first detailed measurements of the scalar performance of the dHPF-generated
code for multipartitionings showed that its scalar performance was a factor of 2.5 slower than the
original sequential code. Careful analysis of overhead in the generated code showed that the main
contributing factors were high primary data cache miss rates, excessive instruction counts due to
complex addressing using linearized subscripts and overly complicated communication code, and
excessive code replication.

To address these issues, we developed a number of compiler refinements including communica-
tion hoisting (which makes it possible to nest loops according to their natural memory order rather
than constraining communication-carrying loops to be outermost), array padding for dynamic ar-
rays to reduce cache conflict misses, data indexing using Cray pointers rather than linearized storage
to help the back-end compiler optimize array subscript calculations, communication set splitting to
avoid complex code that comes from having a single communication event orchestrate data move-
ment across multiple partitioned dimensions, and code generation for multiple loop nests at a time
to reduce code replication that can arise from guard lifting. '

Table 4 uses several metrics to compare the performance of hand-coded MPI, dHPF-generated
MPI (as of May 2000), and the original sequential code. These measurements were collected on a
single node of an SGI Origin 2000 equipped with a 300 MHz MIPS R12000 processor. All code was
compiled using the SGI Fortran 77 compiler version 7.3.1.1.1° :

The overall scalar performance of the dHPF-generated code is competitive with both the hand-
coded MPI and the original sequential code. The number of graduated instructions, graduated
loads, and cache misses measured for the dHPF-generated code are within 4-7% of the values
measured for the sequential code. However, the overall performance of the dHPF-generated code
was 22% slower than the sequential code. The primary contributing factor was that the SGI
compiler failed to generate data prefetches for the dynamic arrays in the dHPF-generated code.

At this point we are optimistic about achieving performance and scalability very competitive
with hand-coded multipartitioning, once ongoing work on communication optimizations is com-
pleted.

10The compiler flags used were -64 -r12000 -0PT:01imit=0 -NC200 -0OPT:alias=cray pointer
-LNO:prefetch=2 -03 in order to attain high performance

45

3.8 Using Data-Parallel Languages for Irregular Applications

Irregular applications contain references for which a closed form representation of the data accessed
cannot be computed statically. On message-passing parallel systems, these applications rely on
runtime libraries to identify accesses to off-processor data and to coordinate data movement. To
keep the overhead of this approach manageable, a good data distribution and communication
aggregation are very important. While HPF generalized array assignments using forall and scatter
statements support irregular data movement, the appropriateness and efficiency of such constructs
is still largely unproven for full-scale irregular applications.

As part of the research in the dHPF project, we performed a comparative study of several im-
plementations of an irregular application for n-body simulation. All implementations use an adap-
tive version of Anderson’s method for hierarchical approximation of far-field interactions [And92].
Hierarchical methods for n-body simulation have been of interest to the computational science
community not only because of their speed and accuracy, but also because their irregular structure
makes efficient parallelization difficult. Hu and Johnsson developed an HPF implementation of
an adaptive hierarchical solver using Anderson’s method that served as the basis for much of our
work [HJ96, HIT97]. Their landmark implementation demonstrated that sophisticated algorithms
for highly irregular problems can in fact be implemented in HPF. However, a performance com-
parison of their HPF implementation with a hand-coded, MPI-based parallel implementation that
we developed exposed some costly inefficiencies in the HPF implementation that slow it’s running
time by as much as a factor of three.

Our comparative study made several contributions:

e We constructed a sophisticated MPI implementation of an adaptive version of Anderson’s
method which integrates proven techniques to achieve good performance and scalability.

e We performed a careful measurement and characterization of overhead in Hu and J ohnsson’s
HPF implementation relative to our MPI reference implementation.

e We described a modification to Hu and Johnsson’s communication strategy that, when in-
tegrated into their implementation, eliminates more than 75% of the performance difference
relative to the MPI implementation.

A detailed description of this study is described in a publication [MMC99].

The next section briefly describes hierarchical n-body methods to provide a context for under-
standing comparisons of HPF and MPI implementations of Anderson’s method. Then, we describe
the key source of inefficiency in Hu and Johnsson’s HPF implementation that we identified in com-
parison with a hand-coded MPI implementation we developed. Finally, we describe a modification
to the HPF approach that dramatically improves performance,

3.8.1 Hierarchical Methods

To compute far-field forces rapidly, hierarchical methods aggregate the effects from bodies a suf-
ficient distance away, computing their influence as part of a group, rather than individually. The
principal data structure used to construct groupings for these methods in 3D is an oct-tree. One
constructs an oct-tree starting with a root box that contains all of the bodies and then recursively
subdividing boxes into 8 boxes of equal size until a stopping condition is met.

Once the tree is formed, an upward pass over the boxes in the tree establishes the far-field
approximations for each box. At the leaves, the approximation for a box is computed from the

46

bodies within; at higher levels, the approximation for a box is computed from approximations for
boxes it contains. The form of the approximation is application specific.

Here we describe a progression of three O(n) hierarchical methods. First we introduce Greengard
and Rokhlin’s fast multipole method (FMM) [GR87]. Next, we describe the adaptive variant of
this algorithm. Finally, we describe Anderson’s method, which has the same algorithmic structure
as the FMM methods, but but a different numerical technique for approximating far-field forces.

Fast Multipole Method. Rather than computing far-field for each body individually, as in the
O(nlogn) Barnes-Hut algorithm [BH86], Greengard and Rokhin’s Fast Multipole Method [GR87]
makes use of the observation that when a box A and a box B are “well-separated”, the far-field effect
of the bodies in box B on those in box A, and vice-versa, can be approximated as a single interaction
between the bozes. Such interactions between well-separated boxes occur at all levels of the tree,
and the savings in computation enable FMM to compute far-field forces in O(n) time. Interactions
are computed in a downward pass over the tree. At each level, interactions are computed between
boxes at that level that are well-separated, and the results, collected in the form of a “local-field
potential,” are passed down to the next level. At the lowest level, the local-field potential for a box
is passed down to each body inside and interactions between bodies not sufficiently separated are
computed.

Adaptive FMM. The FMM algorithm just described assumes a tree of uniform depth. An
adaptive variant avoids unnecessary refinement by not subdividing any box that contains fewer
bodies than a specified threshhold. The key difference with respect to the non-adaptive algorithm
is that the set of boxes with which a given box will interact is not statically known and must be
computed from the shape of the adaptive tree by a somewhat complicated algorithm. To simplify
implementation and maximize cache locality, several types of interaction lists for each box are
computed before the upward pass and a separate computation phase is added between the upward
and downward passes. There are three types of interaction computations and therefore three lists:
boxes in list! are adjacent leaf boxes (and therefore are not sufficiently distant from each other
to allow approximation); boxes in list2 are the same size and well-separated (that is, sufficiently
distant from each other to allow approximation); finally, boxes in list34 are different sized and
well-separated from the perspective of one of the boxes but not the other.

Anderson’s Method. The algorithmic structure of Anderson’s method [And92] is the same as
that of FMM. Its key difference from FMM is in the way it propagates potentials. For three-
dimensional problems, the computational element of FMM is a multipole expansion located at the
center of an abstract sphere containing the cluster of bodies; in contrast, Anderson’s approximation
computes potentials at locations on the circumference of a sphere. Compared to multipole methods,
Anderson’s method achieves the same level of accuracy with fewer levels in the tree.

3.9 Implementation Comparison

Here, we first describe our hand-coded implementation of Anderson’s method. Next, we describe
highlights of Hu and Johnsson’s HPF implementation. Finally, we describe a comparison of the
performance of these implementations for several problem sizes and processor counts on a Cray T3E.
This comparison shows that the HPF implementation has some significant inefficiencies relative to
the hand-coded one.

47

3.9.1 The Hand-coded Implementation

The FMM program in the SPLASH-2 suite from Stanford [WOT+95] was the starting point for
development of our hand-coded MPI implementation of Anderson’s method, though our implemen-
tation now bears little resemblance to the original. Among the structural changes we have made
to the code:

e We use MPI-based explicit communication rather than shared memory.
e We replaced the multipole expansions with Anderson’s method for computing potentials.
e We use a 3D octree as the basis for the hierarchical solver rather than a quadtree.

The principal remaining similarity between the implementations is in the record structures used by
the hierarchical solver. Below we describe key features of our MPI implementation.

Body Distribution. To distribute bodies among processors, we first compute the position of each
body along a Hilbert curve'!, and then sort the bodies according to their position along the curve.
Since both the Hilbert curve and the octtree recursively divide space in half along each dimension,
all bodies in the same leaf of the octtree are contiguous after the sort. Next, we partition the sorted
sequence of bodies among the processors by assigning each processor a contiguous range. We select
the partition points to ensure that each processor is assigned all bodies in a subtree of the octtree.
With this partitioning, we are able to construct octtrees locally, except for a brief communication
phase in which processors exchange information about shared bozes (boxes at upper levels of the
tree whose subboxes lie on more than one processor) to ensure that the representation of these
boxes is globally consistent.

Construction of Neighbor Lists. A key step in adaptive hierarchical methods is building
the interaction lists for each box, as described in Section 3.8.1. The fine-grained nature of the
computation in this phase, combined with its large communication requirements, causes it to be
a major bottleneck in the parallelized application if special care is not taken. By transforming
the uniprocessor list construction algorithm into a form that enables us to gather non-local data
using an efficient inspector-executor strategy, we are able to dramatically reduce the impact of
list construction on the parallel runtime. (Details of our list construction algorithm are described
in [McC99].)

Propagation of Potential Information. As noted before, we replicate information about
shared nodes at the uppermost levels of the tree to all processors and ensure that all nodes in
a subtree below any non-shared node are located on the same processor. This partitioning strategy
avoids communication in the downward pass and requires only a single communication step in the
upward pass when moving from private nodes to the shared parents.

Interaction Computation. As in list construction, we communicate non-local data required in
the interaction computation using a variation on the inspector-executor technique. Computation
is divided into 3 parts: listl interactions, list2 interactions and list34 interactions. To ensure
load-balance, we move data for boxes involved in each of the three computation phases into a

UHilbert curves [Sag94] are one of a class of continuous, non-smooth, “space-filling curves” that map a 1-dimensional
interval to an N-dimensional volume. Such curves can be constructed to pass arbitrarily close to every point in the
volume.

48

“weighted-block” distribution immediately prior to that phase. This involves looking in the work-
list for each box involved in the computation to determine the amount of work it will do, and then
minimally redistributing the boxes such that each processor will have approximately the same total
amount of work.

3.9.2 The HPF Implementation

Details of Hu and Johnsson’s implementation of Anderson’s method can be found in [HJT97]. Here
we provide only a brief overview of some similarities and differences between their implementation
and our hand-coded MPI implementation.

e They represent objects using multiple attribute arrays rather than a single record structure.

e They express communication of non-local data for irregular references using generalized array
assignments to “gather” the data before computation. A published paper describing this work
discusses this issue in more detail [MMC99].

e They distribute bodies using a space-filling curve, though they do not exploit the relationship
with octtrees to minimize communication during the tree-building phase. Instead they con-
struct the tree level-by-level, block distributing the data for each level. As a result, parent
data is not necessarily on the same processor as child data.

e They have parallelized the uniprocessor list creation algorithm in a fashion that requires more
communication rounds than our approach.

e As a result of their level-by-level block distribution of boxes, they must communicate between
each level during the upward and downward passes for propagating potentials. -

e They use a clever scheme that allows enables them to approximate a weighted block distri-
bution to load balance the interaction computations.

e They have an extra repartitioning phase after list construction. This step moves box data
into the weighted block distribution described above.

3.9.3 Initial HPF vs. MPI Performance

Here we summarize the results of a performance comparison of three application variants performed
on a Cray T3E-600 at the San Diego Supercomputer Center. We compared Hu and Johnsson’s
original HPF implementation, our hand-coded MPI implementation, and a variant of the Hu and
Johnsson’s HPF implementation that, for some phases of the algorithm, uses calls to specialized
communication routines Hu and Johnsson developed. The HPF programs were compiled using
PGI's PGHPF compiler, release 2.3-1 for the T3E.

In our experiments, we scaled problem size with the number of processors, so a doubling of
processors implies a doubling of bodies simulated. Bodies were initially distributed according to a
Plummer distribution [AHW94]. Each application variant was run for a single timestep on 8, 16,
32, and 64 processors. Those that didn’t run out of memory were run on 128 processors.

The most significant differences in partitioning strategy between the HPF and MPI imple-
mentations are for the tree construction, upward pass, and downward pass. In these phases, the
hand-coded implementation uses a more efficient strategy based on replication of shared nodes in
the upper levels of the tree. However, despite these differences, these phases show the smallest
differences in performance when comparing the HPF and MPI implementations. The hand-coded

49

implementation always has less overhead; however, the difference in overhead is fairly consistent as
the problem size gets larger and the number of processors increases. For example, this overhead is
3-5% for the upward pass.

The remaining phases, which differ the least in terms of partitioning strategy, have the most
significant differences in performance when comparing the HPF and MPI implementations. The
largest differences are for interactions between well-separated boxes. For 64 processors the overhead
of the HPF implementation is a factor of 84 greater than that of the hand-coded implementation.
This difference translates to a substantial difference in running time: the HPF implementation took
longer to compute interactions between well-separated boxes than the hand-coded version took to
complete an entire timestep cycle.

3.9.4 Rationale for Performance Differences

The performance comparison described in the previous section found that the HPF implementations
were substantially less efficient than the hand-coded MPI implementation. Our analysis of the
applications showed that the most significant performance differences were due to how the different
application variants satisfied (recognized and communicated for) references to off-processor data.

Since no closed form representation of the data accessed by an irregular reference can be com-
puted statically, runtime processing is needed (a) to determine which (if any) accesses through
an irregular reference will access off-processor data, and (b) to coordinate necessary data move-
ment. Rather than performing communication separately for each access to non-local data, it is
advantageous to first determine the locality for all dynamic instances of an irregular reference in a
loop and then communicate for all non-local values in a single step. This strategy is known as the
“inspector-executor” paradigm [MV89, SCMB90]. The inspector determines what non-local data
will be accessed, and the ezecutor performs the computation on local data and localized non-local
data. Both the HPF and MPI implementations use variations of the inspector executor paradigm
to acquire non-local data needed to satisfy references.

Hand-coded Inspection Our hand-coded MPI implementation uses a form of inspector-executors
adapted to our choice of Warren and Salmon “hashed-octtrees” [WS93] for the octtree data struc-

ture of the application. Looking up a node in such trees uses a unique identifier (representing the

nodes location in the tree) as a key for accessing nodes in a hashtable representing the tree. This

approach simplifies management of distributed trees in two ways. First, the identifier for a node is

the same on all processors. Second, integration of non-local nodes into a local tree is simple: data

for non-local nodes is simply added to a processor’s hashtable.

Here we describe how we gather non-local tree nodes needed by a processor. Flrst each processor
inspects its local portion of the computation for accesses to non-local nodes and collects identifiers
for these nodes into a hashtable. Next, all processors exchange the IDs in their off-processor
hashtables. Third, each processor searches its tree for data requested and then replies with the
necessary data if found. Finally, each processor inserts non-local data received into its tree hashtable
and the loop computation continues without further interruption.

This inspection phase enables each processor’s computations at nodes in the octree to look
up information necessary information about interacting nodes (including non-local nodes) without
any regard to where the principal copy of the data resides. The inspector phase ensures that all
processors have copies of any nodes they need. During the executor phase, each processor continues
to access data using an irregular access pattern (in this case, a hash table lookup).

50

Inspection in HPF Hu and Johnsson’s HPF implementation uses generalized array assignments
to gather non-local data in what amounts to a variation of the inspector-executor technique. (A
more detailed description of this issue can be found in a published version of this work [MMC99].)
Their approach has the effect of converting potentially non-local irregular references in the executor
into local regular references. In the HPF language, regularization is the standard idiom for handling
irregular references. This regularization strategy differs qualitatively from the inspection approach
used in the hand-coded application which enables references in the executor to remain irregular.
This difference accounts for the principal differences in efficiency between the HPF and hand-coded
MPI implementations.

Regularization appears to be a simple and elegant solution for handling irregular references
in HPF. However, transforming irregular references in the executor into regular references results
requires replication of a substantial amount of data for this application. For an illustration of the
potential impact in our implementation of Anderson’s method, consider the interactions between
well-separated boxes. Suppose box B is an interior node in a full tree; it is then well-separated from
189 other boxes in a 3D oct-tree. Each of those boxes is also well-separated from B. Thus, B appears
on interaction lists of its 189 neighbors. Using the regularization strategy to localize references to B
in those lists thus causes B’s data to be copied 189 times, potentially across processor boundaries.

There are two ways in which such copying can hurt performance. First, multiple copies of B are
potentially communicated to a single processor (if B appears on multiple lists on that processor),
thereby increasing communication volume and latency. Second, whether B’s data is local or nonlocal,
new space must be allocated to store it, resulting in as much as a factor of 189 difference in B’s
storage requirements (if B is only on local lists).

Our analysis indicates that the additional storage required for regularization is ultimately re-
sponsible for the performance difference between the HPF implementation and its hand-coded
counterpart. Although the runtime processing required to implement inspection should ideally be
placed outside of as many loops as dependences will allow, resource constraints might force their
placement within loops. In several phases of the Hu and Johnsson’s HPF implementation, their
regularization strategy increases storage requirements to such an extent that they needed to place
their gather/inspection code within some loops with many iterations. In contrast, we are able to
place these inspectors at the outermost level in our hand-coded MPI implementation because we
use a hashtable to eliminate storage redundancy.

3.9.5 Improving HPF Performance

To improve HPF performance, we must avoid the redundancy associated with regularization. Un-
fortunately, there are few alternative to regularization. In the HPF language proper, we have found
that programmer-driven inspection of data for locality and redundancy is difficult or impossible
because:

e there is no straightforward means of accessing data owned by a particular processor, and
e there is no notion of arrays local to a processor.

We know of no method that a programmer can use programmer to circumvent the redundancy
inherent in the regularization strategy entirely within the HPF language. We have found, how-
ever, that a modest use of HPF “extrinsic procedures” [Hig93, KLS*94] enables us to avoid the
redundancy while retaining the benefits of the high-level HPF model for the rest of the application.

HPF extrinsic procedures enable HPF programs to call code not written in strict data-parallel
style and allow the called code to operate on distributed arrays defined in the HPF program.

51

HPF LOCAL extrinsic procedures, in particular, have at their disposal several intrinsic functions
that are unavailable at the global level. For example, the intrinsic function size can be used within
an HPF_LOCAL extrinsic to determine the local extent of a dimension of a distributed array passed
as an argument. Because extrinsic procedures enable processors to perform different operations in
parallel (as opposed to identical operations on different parts of the same array) their use is frowned
upon by data-parallel purists.

We are interested solely in the ability extrinsic procedures give us to define local arrays and
manipulate local sections of distributed arrays. We use this capability first to locally collect a
vector of unique indices that will be used to indirectly access a distributed array and then later to
perform a communication-free computation with localized data.

We applied this inspection strategy using HPF_LOCAL to the phases of Hu and Johnsson’s
HPF implementation where our performance comparison indicated that they were needed most: list
construction, and interaction computation. This approach dramatically improved performance of
the HPF code. Our experiments showed that using an HPF_LOCAL inspector reduced overhead in
the list creation phase by roughly a factor of 10. When this strategy was used in conjunction with Hu
and Johnsson’s MPI-based collective communication rather than PGHPF’s default communication,
the overhead dropped by an additional factor of two or more.

Only the interactions between boxes that are different sized and well-separated from the per-
spective of one of the boxes but not the other are somewhat problematic using the HPF_LOCAL
approach. We attributed this to the fact that we are forced to use a rather inefficient communication
method to move the boxes into the weighted-block distribution. Specifically, because of the way
data is laid out and the formulation of the function which determines the new distribution, we are
forced to use a scatter_copy rather than a forall to move the data; unfortunately scatter_copy
does not provide a good way to move multi-dimensional data. One is forced to use a very general
technique with which it is possible to describe the new position of every single element in the array;
in this case, we simply want all elements of a row to follow the first element.

3.9.6 Discussion

We have described and evaluated two sophisticated parallel implementations of an adaptive, hier-
archical solver which uses Anderson’s method for calculating interactions in n-body systems: our
explicitly-parallel MPI implementation and Hu and Johnsson’s data-parallel HPF implementation.
Our measurements of these implementations demonstrated that there were significant performance
differences between the hand-coded MPI and the HPF implementations. We determined that
the primary source of inefficiency in the HPF implementation was redundant communication that
was necessary to initialize redundant storage that is used for regularizing indirect references. We
demonstrated that when this redundancy is eliminated in Jjust two phases of the HPF implemen-
tation, with the aid of HPF_LOCAL semantics, the performance of the otherwise unchanged HPF
implementation much more closely approaches that of the hand-coded version.

On 64 processors, while the original HPF implementation incurs nearly 300% more overhead
than the hand-coded version, our revised HPF implementation reduces the gap to just 50%. If
we accept the assertion that collective communication support in the PGI HPF compiler could be
improved to approach the efficiency of the specialized communication routines written by Hu and
Johnsson (used by the HPF-MPI and HPFLOC-MPI versions) then there is a fairly consistent gap
of about 25% left between the performance of the hand-coded MPI implementation and the revised
HPF implementation.

Two questions remain. First, what accounts for the remaining performance gap and can it be
bridged? Second, what are the implications of this work for irregular computation and HPF?

52

Remaining Gap. Almost all of the remaining difference in running times between the two im-
plementations can be attributed to the phases of the algorithm that we did not change. The one
exception would appear to be the interactions between well-separated boxes. However, 80% of the
difference in time for this phase is due to a small difference in the computational algorithm: the
HPF versions have a test in an innermost loop which we avoided in the MPI implementation. If
we discount this algorithmic inefficiency, we find that the phases of the HPF implementation that
we didn’t change account for 86% of the remaining performance gap while the phases we changed
account for only 14% of the remaining gap.

There are several factors which contribute to the remaining 14% performance gap in the appli-
cation phases we modified to use the HPF_LOCAL-based inspection strategy. First, we took great
pains in the MPI implementation to ensure that no communication of data “holes” takes place,
whereas the HPF implementation cannot. For example, when communicating the particles associ-
ated with a leaf box, we communicate and store exactly the number of particles associated with that
box, while the HPF implementation communicates and stores the maximum number of particles
per box for every box. Second, our use of structures to group data in the MPI implementation
results in a single communication per object whereas the HPF implementation’s use of attribute
arrays results in multiple communications per object, which increases communication overhead.

These same factors, of course, also contribute to the performance gap for the phases that
we did not modify. There are two components to the remaining difference in the unmodified
phases: the extra partitioning phase required in the HPF application, and the algorithmic phases
(upward and downward passes, tree build). We first note that the extra partitioning phase was not
improved by the use of Hu and Johnsson’s MPI routines, primarily because it uses more complicated
communication constructs such as scan reductions that they chose not to implement in MPIL. The
time for this phase could potentially be lower if the PGI runtime library communication routines
can be improved.

After accounting for the factors discussed above, we attribute the rest of the performance
differences to differences in partitioning strategies used by the HPF and MPI implementations.
The main feature that distinguishes the partitioning strategy we used in MPI from that used in
HPF is the notion of processors sharing boxes in the upper levels of the tree. Given the restrictions
on user knowledge of processor/data relationships imposed by the HPF language, it is not clear how
one could implement this strategy in HPF. Perhaps instead of a single array representing boxes,
one could split them into two sets: those owned by a single processor in a distributed array and
those owned by all processors in a separate replicated array. Whether a compiler could efficiently
coordinate data motion between the two sets as we have in our implementation, is not obvious.

Implications. We have shown that if arbitrary irregular applications are to be implemented
with high efficiency in data-parallel languages such as HPF, then special care must be taken to
avoid redundancy in the communication and storage of non-local data. We believe that this work
therefore has implications for two groups:

1. Vendors of HPF compilers need to provide better support for automatically generating appro-
priate inspector-executor code for irregular references. Techniques described by von Hanxle-
den [Han94] in his dissertation would suffice for the cases we encountered, though extensions
to these techniques may be needed for more complex cases, such as those involving multiple
levels of indirection. Without compiler-synthesized inspectors and executors, we know of no
way to eliminate the communication redundancy that results from regularization without
dropping into HPF LOCAL extrinsics. Attempts to achieve the desired effect by not using a
forall loop for regularization of irregular reference patterns caused the PGI HPF compiler to

53

employ run-time resolution with which no speedup is possible.

2. Until better inspector-executor support becomes widely available in HPF compilers, HPF
application developers would do well to follow our example and use HPF_LOCAL extrinsic
procedures to implement inspector-executor style handling for irregular references in cases
where storage and communication redundancy prove significant.

3.10 Compiler and Run-time Support for Software Distributed Shared-Memory

Software distributed shared-memory systems implement shared-memory communication abstrac-
tions on top of message-passing systems, thus providing a flexible base for developing parallel
applications. Shared memory is particularly suited to irregular applications because its dynamic
resolution of communication greatly simplifies access to, and management of, irregularly shared
data. However, the types of regular applications supported by SDSMs are limited. The regu-
lar, data-parallel applications used in the previous studies [LCD*96, DCZ96, HTK98, CL97] all
had their computations partitioned along the single, slowest varying dimension of the principal
array. Because SDSMs use blocks that are multiples of system page sizes, partitioning along other
dimensions causes a large number of pages to become fragmented, containing only a few truly
shared values along with a large amount falsely shared data.Such fragmentation results in disas-
trously high communication costs. However, applications with directional sweeps across several
data dimensions, such as those common in computational fluid dynamics codes (e.g. [BHST95]),
can reduce serialization by partitioning computation in multiple dimensions. Multi-dimensional
partitionings are also more scalable than one-dimensional partitionings because they results in a
lower communication/computation ratio. For these reasons, supporting multi-dimensional parti-
tionings effectively on an SDSM is an important problem. Regular applications in previous studies
exhibit loosely-synchronous parallelism, namely, completely parallel loop nests that are separated
by synchronization. Noticeably absent are regular applications that require more tightly-coupled
synchronization such as wavefront parallelizations of applications with loop-carried data depen-
dences. ’

As part of the dHPF project, we devised and evaluated techniques for compiling High Perfor-
mance Fortran(HPF) to page-based software distributed shared memory systems(SDSM). Our work
focused on reducing the cost of false sharing!? and fragmentation!® caused by multi-dimensional
partitioning. We exploit compiler-derived knowledge of sharing and communication patterns to
help choreograph SDSM synchronization and data movement. In addition, we leverage compiler
knowledge of synchronization patterns by extending DSM synchronization mechanisms to support
pairwise synchronization and to support reductions efficiently using an extension of the barrier
implementation. Although pairwise synchronization usually reduces the number of synchronization
messages, more importantly, it enables us to organize wavefront computation. The combination of
techniques we describe efficiently and effectively supports not only loosely-synchronous parallelism
with multi-dimensional computation partitioning but also tightly-coupled applications.

In our work, we developed two novel techniques. The first technique, the compiler-managed
restricted consistency, use compiler-derived knowledge to delay the application of memory con-
sistency operations to data that is provably not shared in the current synchronization interval,
reducing false sharing. The second technique, the compiler-managed shared buffers, when com-
bined with restricted consistency, eliminates fragmentation. The two techniques can efficiently

12False sharing occurs when two or more processors access disjoint sets of data elements in the same block.
*Fragmentation occurs when blocks are communicated for only a small fraction of data.

54

support multi-dimensional computation partitioning and parallelization of wavefront computation
on SDSM. We explain these techniques briefly below.

Compiler-Managed Restricted Consistency. Whenever processors synchronize, the multiple-
writers protocol used in TreadMarks will re-establish the consistency of falsely-shared pages, even
if they will continue to be falsely-shared. To avoid such unnecessary consistency maintenance, we
further weaken the standard lazy release consistency, multiple-writer model [ACD*96] by having
a signal operation create consistency meta-data only for modified pages that might be accessed
by its synchronization partner. In general, the compiler proves that some set of data pages are
guaranteed not to be shared between this synchronization operation and the next, and enforces
consistency only for pages outside this set. For regular applications, the dHPF compiler computes
precisely the set of pages that must be communicated.

For irregular applications, our analysis is inexact but conservative. The barrier or lock calls
are provided similarly with such a set of pages that either the compiler or the programmer can
prove not to be shared in the current synchronization interval. The compiler may peel or split
a loop when the synchronization intervals in different iterations involve different set of pages to
synchronize. See [Zha99] for detail.

Compiler-Managed Shared Buffers. As noted earlier, multi-dimensional computation parti-
tionings can cause substantial fragmentation and false sharing. When pages contain only a few
shared values, we marshal the actively shared data into separate out-of-band, shared buffers, and
transform the read reference to access the data in the shared buffer. The compiler algorithm that
detects such data is testing whether the array access is stride-one in a loop. To minimize false
sharing on the buffer, we allocate a new page aligned buffer for every pair of destination processor
and array. Moving the actively shared data to a compact set of densely packed pages enables
restricted consistency to skip consistency operations on the fragmented pages. The computational
overhead of using compiler-managed shared buffers includes the cost of splitting loops and data
copying, which is relatively small. ‘

Shared-buffer also applies to irregular applications. Take molecule dynamic and fluid dynamic
applications as examples. These applications involve indirect access of shared arrays through usually
an interaction list. Through this list, each processor usually has a fixed set of elements to access
and modify for a number of iterations. False sharing and fragmentation may arise if the index set
is scattered on the shared arrays. Shared buffers can be allocated to hold only those elements from
the index set. Each processor will access the buffer of its own interest. This requires that the index
sets are precomputed by a preprocessing loop from the interaction list.

DSM Enhancements. To coordinate the pairwise sharing and enforce dataflow constraints effi-
ciently on the TreadMarks SDSM, we extended the application programming interface with support
for point-to-point synchronization primitives signal and wait. We also extended the barrier mech-
anism to carry data on the barrier messages. This has many uses, but in our case the motivation
is the efficient implementation of reductions. To eliminate round-trip communication for each
pairwise-shared page following synchronization operations, we augmented our SDSM implementa-
tion of point-to-point synchronization to support selective eager update, where a compiler-specified
set of pages are sent to the synchronization partner along with consistency metadata in anticipation
of the waiter’s expected future requests. The compiler is conservative, so that no data is pushed
but not accessed after the synchronization. The SDSM runtime decides how many data pages can
be pushed without overwhelming the communication subsystem.

55

Opts | Meaning

P point-to-point synchronization
E eager update
R

B

restricted consistency
compiler-managed shared buffer

Table 5: Key for row heading abbreviations in performance tables.

Opts | Time | Msg | Comm
(s) | (K) | (MB)

P 918 | 6,615 | 17,063
PE 599 617 | 17,629
PR 918 | 6,491 | 16,932

PRE 591 474 | 17,687

Table 6: NAS-BT class A 16 columnwise computation partitioning

3.10.1 Effectiveness of Integrated Compiler and Run-time Optimizations

To evaluate the effectiveness of our integrated compiler and runtime techniques and understand
the interactions among different optimization techniques, we studied the performance of a set of
HPF benchmark codes compiled with our SDSM-version of the dHPF compiler and executed on the
enhanced TreadMarks SDSM system. Our experiments were performed on an IBM SP2. The SP2
is a distributed memory message-passing machine. Our experimental platform was populated with
“high” processor nodes, each consisting of 4 PowerPC 604e processors with 1GB of main memory.
Nodes are connected by a multi-layer scalable switching fabric. On each multiprocessor high node,
we ran only one process to ensure that all messages were transported across the switch and that
there was no contention for the network interface. Unless otherwise stated, all experiments were
performed on 16 high nodes with one process active on each.

We only report results for BT, an application benchmark from the NAS 2.0 Benchmark suite.
We compare the performance of multiple configurations of compiler and runtime optimizations to
ascertain the impact of these optimizations both collectively and individually.

NAS-BT is a large, “whole application” benchmark. Our parallel version was constructed by
starting with the sequential version of the BT benchmark from the NAS suite [BHS*95], adding
HPF directives, and interchanging a few loops to adjust the pipeline granularity exploited by dHPF.
(These changes are described elsewhere [AJMCY98].) For those phases in which computation
sweeps along a partitioned dimension the compiler can generate pipelined parallelism. By using
point-to-point synchronization, this pipelining becomes a wavefront.

We ran the NAS-BT experiments on the class A problem size using (*, BLOCK) and (BLOCK,
BLOCK) data distributions and on 16 processors. The original sequential version runs in 3948
seconds!?.

Table 6 summarizes 16-node runs column-wise 1D partitioning. There is not much false shar-
ing, so the optimizations addressing false sharing give only modest improvements. The message
aggregation and latency avoidance of the eager update mechanism does provide significant improve-
ment. The 1D partitioning leads to longer pipelines (which increase serialization) which degrades

Because of hardware differences, the results presented here are not directly comparable with the results presented

in [AJMCY?98].

56

Opts | Time | Msg | Comm

(s) | (K) | (MB)
P 926 | 6,320 | 14,904
PE 737 [3,231 | 15,0562
PR 916 | 4,674 | 11,143
PRE 595 | 754 | 11,334
PB 1066 | 6,425 | 10,689
PEB 852 | 3,421 | 10,795
PRB 585 | 3,252 5,075
PREB 405 | 247 5,151

Table 7: NAS-BT class A 4x4 computation partitioning. Sequential time is 3948s.

efficiency as more processors are added.

Table 7 summarizes results for (BLOCK,BLOCK) 2D partitioning on 16 processors. False sharing
and fragmentation are extensive. Compiler restricted-consistency by itself (PR) hides some of the
false sharing, reducing the communication volume by a third, but it does not address communication
latency or fragmentation. '

The combination of compiler-managed buffer and compiler restricted-consistency (PRB) works
as intended to convert highly fragmented pages into falsely shared ones and to then hide the
pages from the consistency mechanism. This eliminates two thirds of communication and reduces
execution time by over 56%.

Used with any combination of the other mechanisms, eager update decreases communication
cost through message aggregation and latency elimination. The best speedup, 10 out of 16, is
achieved by applying all of the optimizations (PREB). Once the false sharing and fragmentation
problems have been dealt with, the increased parallelism and smaller communication /computation
ratio of the 2D partitioning contribute to better overall performance than is achieved using 1D
partitioning as the results in Table 6 show.

Our experiments demonstrate that our integrated compiler and runtime support for SDSM
can effectively improve the performance of regular applications, including those with loop carried
data dependences that require tight-coupling and pipelined codes to parallelize effectively. The
combination of compiler-managed restricted consistency in conjunction with compiler-managed
communication buffers is very effective at reducing the amount of false sharing and fragmentation
for the applications we examined. Our optimizations make scalable multi-dimensional computation
partitionings feasible with SDSM.

3.11 Integrated Compiler Support for Tools

For high-level programming languages such as HPF to be useful, tools need to blsfidge the semantic
gap between the high-level source and the generated code. Earlier DARPA-supported research at
Rice supported development of the D System programming tools which were integrated with a
compiler to support data-parallel programming. In this project we extended that work to support
more complex program transformations and provide more detailed user feedback.

The tools work in the dHPF project focused on support for the D Editor, an interactive tool that
helps users understand the data-parallel compilation process and the relationship between the code
generated and the original source. To support this tool, the dHPF compiler constructs an extensive
database during compilation that includes detailed transformation maps to correlate source with
output code. These maps enable the user interface to support bi-directional mapping between

o7

any fragment in the the source code and the generated code as well as to relate performance to
both the generated code and the original source. The source-level program interface also provides
information about the the parallelism exploited and communication introduced by the compiler.

Tools support in the dHPF compiler has focused on three major types of support for source-level
tools: a transformation hierarchy for tracking program transformations, collecting static analysis
results to explain compiler parallelization of the program [ACG*94], and performance-oriented in-
formation to map measured performance back to source code [AWMC™95]. During compilation,
this information is collected into a program database. The program database serves as a primary
information source for several tools with functions including interactive browsing of program anal-
ysis and transformation results, instrumenting generated code to collect runtime information, and
interpreting runtime information.

The focus of our efforts in this area are summarized briefly below.

o We developed new and more precise techniques to map between the compiler-generated par-
allel code (the result of a series of transformations) and the source code. In particular, we
developed an extended “transformation-tracking mechanism” that computes maps relating
the code before and after each transformation at the granularity of individual statements and
references. Making this practical in a compiler like dHPF, which makes a very large number
of transformations, is a challenging task. We solved this problem as follows.

First, we developed the concept of a transformation hierarchy, which is a tree-based repre-
sentation of the transformations performed by the compiler. An internal node in the tree
represents a logical transformation performed on the code, while its immediate children rep-
resent a sequence of smaller transformations that implement that logical transformation. The
root of the transformation hierarchy represents the entire compilation. The leaves of the hi-
erarchy represent the actual low-level manipulations of the program internal representation
(e.g., inserting a statement or replacing a reference with another one). To support this track-
ing mechanism, we modified the program internal representation (an Abstract Syntax Tree)
so that multiple versions of program fragments can unambiguously coexist.

Second, we developed mapping algorithms that traverse the transformation hierarchy in ei-
ther direction, providing precise information about the set of output AST nodes created from
a given source AST node, and vice versa. This enables tools using the program transforma-
tion information in the database to accurately map the generated code to the corresponding
source code. The performance tool, for instance, uses this mechanism to correctly attribute
summaries of the measured dynamic performance to fragments in the original source program
as well as to attribute more detailed performance information to fragments in the generated
code.

e We redesigned the loop categorization scheme used by the D Editor to provide programmer
feedback about compiler-based parallelization of code. Qur new strategy supports the dHPF
compiler’s computation-partitioning model, which is now vastly more general than the one
considered previously for loop characterization.

e We developed a tool that uses information in the program database as the basis for instru-
menting dHPF-generated programs. The instrumented code uses the AIMS instrumentation
library [YSM95] developed by NASA Ames to collect execution traces. Our program in-
strumenter is capable of instrumenting any message-passing code generated by our compiler,
including support for point-to-point message passing, reductions, and broadcasts. An execu-
tion of a program instrumented using this tool will collect communication traces that we are

58

able to view graphically using the AIMS XV tool [YSM95]. Our instrumentation tool uses
the mapping information in the program database to relate communication in the generated
program back to the original HPI' program source.

e We added execution analysis support for computing derived statistics from a program’s execu-
tion trace. These statistics include measures such as the number of invocations for loops and
procedures and the time spent in communications other than sending or receiving messages.

e We updated the D Editor user interface to use the dHPF compiler’s new program analysis
results and compilation information from the program database, and extended the browser
was extended to annotate the program with run-time performance about communication
and computation using information distilled from AIMS trace information produced by our
instrumented programs. Third, display of program run-time performance information has
been extended to not only display performance information in terms of the original source,
but also for the generated code.

3.12 Other Accomplishments

HPF Benchmark Suite We cooperated with Dr. Hu and Dr. Johnsson and built an HPF
benchmark suite (HPFBench) for evaluating the HPF language and compilers on scalable architec-
tures based on their early work on Connection Machine Fortran in Thinking Machine Corp.

The functionality of the HPFBench benchmarks covers linear algebra library functions and ap-
plication kernels. The motivation for including linear algebra library functions is for measuring the
capability of compilers in compiling the frequently time-dominating computations in applications.
One motivation for building libraries, in particular in the early years of new architectures, is that
they may offer significantly higher performance by being implemented, at least in part, in lower
level languages to avoid deficiencies in compiler technology, or in the implementation of compilers
and run—time systems. However, though the functionality of libraries is limited compared to that
of applications being run on most computers, implementing libraries in low level languages tend to
be very costly, and often means that high or even good performance may not be available until late
in the hardware product cycle. This in turn implies that following the rapid advances in hardware
technology is very difficult, since the older generation hardware often competes successfully with
the new generation because of the difference in the quality of software. Thus, it is important to
minimize the amount of low level code also in software libraries, and shift the responsibility of
achieving high efficiency to the compiler.

In addition to some of the most common linear algebra functions that are frequently occurring
in many science and engineering applications, the HPFBench benchmark suite also contains a set of
small application codes containing typical “inner loop” constructs that are critical for performance,
but that are typically not found in libraries. An example is stencil evaluations in explicit finite
difference codes. The benchmarks were chosen to complement each other, such that a good coverage
would be obtained of language constructs and idioms frequently used in scientific applications, and
for which high performance is critical for good performance of the entire application. Much of the
resources at supercomputer centers are consumed by codes used in fluid dynamic simulations, in
fundamental physics and in molecular studies in chemistry or biology. The selection of application
codes in the HPFBench benchmark suite reflects this fact.

The HPFBench benchmark codes are written entirely in High Performance Fortran 1.0 standard.
Tested features cover array operations from Fortran 90, data mapping directives, parallel constructs,
and library procedures including scatter operations, parallel prefix operations, and sort opertion
from HPF. Details of this work are described in a publication [HJJ*00].

59

Techniques for Improving the performance of Irregular Applications. As part of this
project’s research, we worked with irregular applications including molecular dynamics and particle
hydrodynamics. Modern computer systems use multi-level memory hierarchies to bridge the ever-
widening gap between CPU speed and memory speed. However, multi-level memory hierarchies are
typically underutilized by irregular applications because their patterns of indirect accesses have poor
locality. We investigated strategies for data and computation reordering to improve utilization of
multi-level memory hierarchy for irregular applications. We described and evaluated strategies for
data and computation reordering using space-filling curves and introduced multi-level blocking as a
new computation reordering strategy for irregular applications. Experiments that applied specific
combinations of data and computation reorderings to two irregular programs, overall execution time
dropped by a factor of two for one program and a factor of four for the second. One of the codes we
used in our experimentation was MAGI, an Air Force particle hydrodynamics code. Qur reordering
improved end-to-end performance of this code by a factor of 2 on the test case we studied. Details
of this work are described in a publication [MCWK99]. Section 6 describes interactions with DoD
researchers regarding this technology. Under separate funding from the DOE, we are exploring use
of this technology in ASCI applications.

MHSIM: a Multi-level Memory Hierarchy Simulator. For an application code to achieve
high performance, it must exploit caches effectively. Most scientific codes in production use were
developed for vector proces sors that had no caches. When porting such applications to machines
with multiple layers of caches, it is difficult to understand the reasons for poor memory hie rarchy
utilization. To address this problem we have developed MHSIM, an integrated instrumentation
tool and simulator. MHSIM is designed to

e identify program references causing poor cache utilization,
e quantify cache conflicts, temporal reuse and spatial reuse, and

e correlate simulation results to references and loops in an application program.

The MHSIM simulator and associated instrumentation tool orchestrate a detailed simulation of
multi-level memory hierarchies that can help identify the causes res ponsible for poor memory hier-
archy utilization and help users achieve a higher fraction of peak performance. The impact and DoD
Relevance of this tool is to help DoD users understand how to tune memory hierarchy performance of
complex Fortran 77 and Fortran 90 application codes. The MHSIM simulator and instrumentation
tool for Fortran programs is available from http://www.cs.rice.edu / dsystem/mhsim. Supplemental
funding for this work was received through the DoD High Performance Computing Modernization
Program CEWES Major Shared Resource Center Programming Environment and Training (PET),
Contract Number: DAHC 94-96-C0002, Nichols Research Corporation. We delivered this tool to
Dr. Clay Breshears and Dr. Henry Gabb at DoD EHRC MSRC for use by DoD scientists.

3.13 Evaluation of Accomplishments

This project’s main objective was to develop compiler analysis and code generation technology that
enables machine-independent, data-parallel programs to achieve high performance on a range of
scalable parallel architectures for a broad spectrum of scientific applications.

As design and implementation of dHPF began, it was believed that broadening the scope of
HPF compilation techniques to handle irregular problems was the most important goal. It soon
became clear, though that the principal impediment to commercial success of HPF was low perfor-
mance, even for the dense matrix computations for which it was designed. While HPF compilers

60

could deliver performance similar to hand-coded applications for a small class of codes that had
embarassingly parallel or loosely synchronous computation, more tightly-coupled computations,
such as those using ADI integration, were a considerable stumbling block. Even with wholesale
rewriting of such codes, the end result was lower performance and scalability than the hand-coded
parallel versions.

To address performance concerns across the spectrum of applications, analysis and commu-
nication placement techniques implemented in dHPF were designed to support both regular and
irregular applications. As we began to work with representative scientific applications such as the
NAS parallel benchmarks, it became clear that there were significant shortcomings in compiler
technology for regular applications as well. In response, the project began to focus more on trying
to make computations for which HPF was designed faster, rather than on broadening the focus
of HPF. Without high-quality parallelizations of regular applications, high-level data-parallel pro-
gramming models would fall by the wayside. Funding cuts of roughly 20% limited our ability to
provide complete code-generation support for irregular applications, except in our code generator
for shared-memory systems.

As the project funding ended, our goal of transferring compiler technology to deliver per-
formance competitive with hand-coded parallel programs through compiler optimization of data-
parallel languages has not been met. While the technology we have developed shows great promise
(for example, it can automatically generate extremely sophisticated parallelizations of line-sweep
computations such as those in the NAS computational fluid dynamics benchmarks), we have found
that having 95% of the technology in place is insufficient to deliver hand-coded performance. With-
out the last 5% of the optimizations in place, performance and scalability is unacceptable. The
lesson for compiler-based parallelizations is that unless everything is perfect, the results are un-
satisfactory. We are in the process of completing an overhaul of our communication generation
framework to enable sophisticated message aggregation that will improve the efficiency of multi-
partitioning. Once this work is integrated back into our main line software, we will distribute the
system on the WWW so that others can benefit from the technology we have developed.

4 Project Publications

[1] Ajay Sethi and Ken Kennedy. Resource-Based Communication Placement Analysis In Proceed-
ings of the Ninth Workshop on Languages and Compilers for Parallel Compilers for Parallel
Computing (LCPCY6), Lecture Notes in Computer Science 1239, San Jose, California, (August
1996), pages 369-388.

[2] Ajay Sethi and Ken Kennedy. A Communication Placement Framework with United Depen-
dence and Data-Flow Analysis. In Proceedings of the Third International Conference on High
Performance Computing, India, December 1996. (Also available 1996 International Conference
of High Performance Computing) Received best systems paper award, Digital Equipment (In-
dia), 1996.

[3] Vikram Adve and John Mellor-Crummey. Advanced code generation for High Performance
Fortran. In Languages, Compilation Techniques and Run Time Systems for Scalable Parallel
Systems, Lecture Notes in Computer Science 1511, Springer-Verlag, 1998.

[4] Bo Lu. Compiling reductions in data parallel programs for distributed memory multiprocessors.
Master’s thesis, Dept. of Computer Science, Rice University, July 1997.

61

(5] John Mellor-Crummey and Vikram Adve. Simplifying control flow in compiler-generated paral-
lel code (extended abstract). In Proceedings of the Tenth International Workshop on Languages
and Compilers for Parallel Computing, Lecture Notes in Computer Science 1366, Minneapolis,
MN, Springer-Verlag. August 1997.

[6] Gerald Roth, John Mellor-Crummey, Ken Kennedy, and R. Gregg Brickner. Compiling stencils
in High Performance Fortran. In Proceedings of SC’97: High Performance Networking and
Computing, San Jose, CA, November 1997.

[7] Vikram Adve and John Mellor-Crummey. Using integer sets for data-parallel program analysis
and optimization. In Proceedings of the SIGPLAN 98 Conference on Programming Language
Design and Implementation, Montreal, Canada, June 1998.

[8] John Mellor-Crummey and Vikram Adve. Simplifying control flow in compiler-generated par-
allel code. International Journal of Parallel Programming, 1998.

[9] Bo Lu and John Mellor-Crummey. Compiler optimization of implicit reductions for distributed
memory multiprocessors. In Proceedings of the 12th International Parallel Processing Sympo-
sium, Orlando, FL, March 1998.

[10] Vikram Adve, Robert Fowler, Guohua Jin, Ken Kennedy, and John Mellor-Crummey. Ad-
vanced Optimization Techniques for HPF. In Proceedings of the 2nd Annual HPF Users’ Group
Meeting, Porto, Portugal, (June 1998).

[11] Gerald Roth and Ken Kennedy. Loop Fusion in High Performance Fortran. In Proceedings of
the 12th ACM International Conference on Supercomputing, Melbourne, Australia, July, 1998),
pages 125-132.

[12] Vikram Adve, Guohua Jin, John Mellor-Crummey, and Qing Yi. High Performance Fortran
compilation techniques for parallelizing scientific codes. In Proceedings of SC98: High Perfor-
mance Computing and Networking, Nov 1998.

[13] Ken Kennedy. Compilers, Libraries, Languages. In Computational Grids: The Future of High—
Performance Distributed Computing, (1. Foster and C. Kesselman, editors), Morgan Kaufmann
Publishers, Inc., August, 1998.

[14] John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving Memory Hierarchy
Performance for Irregular Applications. In Proceedings of the ACM International Conference
on Supercomputing, Rhodes, Greece, June 1999,

[15] Collin McCurdy and John Mellor-Crummey. An Evaluation of Computing Paradigms for N-
body Simulations on Distributed Memory Architectures. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Atlanta, GA, May 1999.

[16) Kai Zhang. Compilation and Runtime Optimizations for Software Distributed Shared Memory.
Master’s thesis, Dept. of Computer Science, Rice University, October, 1999.

(17] Collin McCurdy. An Evaluation of Computing Paradigms for N-body Simulations on Dis-
tributed Memory Architectures. Master’s thesis, Dept. of Computer Science, Rice University,
May, 1999.

62

[18] Y. C.Hu, G.Jin, S. L. Johnsson, D. Kehagias and N. Shalaby HPFBench: A High Performance
Fortran Benchmark Suite ACM Transactions on Mathematical Software 26(1), 99-149, March

2000.

[19] Daniel Chavarria-Miranda and John Mellor-Crummey. Toward Compiler Support for Scal-
able Parallelism using Multipartitioning. In Proceedings of the Fifth Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers, Rochester, NY, May 25-26, 2000

[20] Kai Zhang, John Mellor-Crummey, and Robert Fowler. Compilation and Runtime Optimiza-
tions for Software Distributed Shared Memory. In Proceedings of the Fifth Workshop on Lan-
guages, Compilers, and Run-time Systems for Scalable Computers, Rochester, NY, May 25-26,

2000

[21] Vikram Adve and Rizos Sakellariou. Compiler synthesis of Task Graphs for Parallel Programs.
In Proceedings of 18th Annual Workshop on Languages and Compilers for Parallel Computing
(LCPC’00), Yorktown Heights, NY, August 2000.

5 Personnel

5.1 Faculty

e Ken Kennedy, Ann and John Doerr Professor of Computer Science, Department of Computer
Science, Rice University.

e John Mellor-Crummey, Senior Faculty Fellow, Department of Computer Science, Rice Uni-

versity.

5.2 Research Staff

e Vikram Adve, Research Scientist, Department of Computer Science, Rice University (now
Assistant Professor of Computer Science, University of Illinois Champaign-Urbana).

e Robert Fowler, Research Scientist, Department of Computer Science, Rice University.
e Guohua Jin, Research Scientist, Department of Computer Science, Rice University.
e Paul Havlak, Post Doctoral Researcher, Department of Computer Science, Rice University.

e Rizos Sakellariou, Post Doctoral Researcher, Department of Computer Science, Rice Univer-
sity.

e Kathi Fletcher, Research Programmer, Center for Research on Parallel Computation, Rice
University.

e Monika Mevenkamp, Research Programmer, Center for Research on Parallel Computation,
Rice University.

e Nathan Tallent, Research Programmer, Center for Research on Parallel Computation, Rice
University.

e Donald Baker, Research Programmer, Center for Research on Parallel Computation, Rice
University.

63

5.3

5.4

Mark Mazina, Research Programmer, Center for Research on Parallel Computation, Rice
University.

Lei Zhao, Research Programmer, Center for Research on Parallel Computation, Rice Univer-

sity.

Graduate Students

Dejan Mircevski, Master of Science, Department of Computer Science, Rice University, 1997.

Bo Lu, “Compiling Reductions in Data-Parallel Programs for Distributed-Memory Multipro-
cessors,” Master’s Thesis, Department of Computer Science, Rice University, 1997.

Mark Anderson, Master of Science, Department of Computer Science, Rice University, 1997.

Ajay Sethi, “Communication Generation for Data-Parallel Languages,” Ph.D. Thesis, De-
partment of Computer Science, Rice University, 1997.

Qun Wang, Master of Computer Science, Department of Computer Science, Rice University,
1998.

Nenad Nedeljkovic, Master of Computer Science, Department of Computer Science, Rice
University, 1996.

Kai Zhang, “Compiling for Software Distributed-Shared Memory Systems,” Master’s Thesis,
Department of Computer Science, Rice University, 1999. Currently a Ph.D. Candidate.

Collin McCurdy, “Efficient Techniques for N-body Simulation on Distributed Memory Archi-
tectures,” Master’s Thesis, Department of Computer Science, Rice University, 1999.

Chen Ding, Improving Effective Bandwidth through Compiler Enhancement of Global and
Dynamic Cache Reuse”, Ph.D. Thesis, Rice University, 2000.

Li Xu, Ph.D. Candidate, Department of Computer Science, Rice University.
Qing Yi, Ph.D. Candidate, Department of Computer Science, Rice University.
Daniel Chavarria-Miranda, Ph.D. Candidate, Department of Computer Science, Rice Univer-

sity.

Undergraduate Students
Nathan Tallent, Bachelor of Arts, Rice University, 1998.

John Campbell, Bachelor of Arts, Rice University, 1998.
Adam Hunter, Bachelor of Arts, Rice University, 1998

Trushar Sarang, Bachelor’s Candidate, Department of Computer Science, Rice University.

64

6 Interactions

As part of this project’s research, we worked with irregular applications including molecular dy-
namics and particle hydrodynamics. Dr. M. Ehtesham Hayder, a Rice researcher involved in the
DoD High Performance Computing Modernization program, coordinated technology transfer from
this project to several DoD sites.

Two topics of special interest to DoD researchers were our work on efficient, parallel, hierarchical
methods for computing n-body interaction problems and our work on using data and computation
reordering for improving memory hierarchy utilization (and thus overall performance) of irregular
applications. -

Details of our modifications to Hu and Johnsson’s HPF code for simulating n-body interac-
tions using Anderson’s hierarchical method (related to the fast multipole method) were provided to
DoD labss by Dr. Hayder. A copy of a paper “An evaluation of computing paradigms for n-body
simulations on distributed memory architectures” by Collin McCurdy and John Mellor-Crummey
(Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, Atlanta, GA, May 1999) describing our work was circulated to Dr. Adam Hughes and Dr.
Ruth Pachter (CCM-4, Air Force Research Laboratory, Wright-Patterson Air Force Base) and Dr.
Richard Luczak (DoD ASC MSRC), and Dr. Andrew Mark (Army Research Laboratory, Aberdeen
Proving Ground). Dr. Hayder also transferred th source code developed in this effort.

At the suggestion of Dr. Hayder, we used MAGI, an Air Force particle hydrodynamics code
obtained from David Medina of the US Air Force Research Laboratory as one of the driving ap-
plications for our work on irregular applications. The work with Magi addressed issues of program
and data structure, techniques for identifying the cause of performance problems, and on solutions
to these problems using compiler and run-time technology. Our work with MAGI led to two spinoff
technologies. .

First, the need to understand MAGI’s memory referencing behavior and and its impact on
performance led us to develop a simulator for multi-level memory hierarchies. Under supplemen-
tal funding (DoD High Performance Computing Modernization Program CEWES Major Shared
Resource Center through Programming Environment and Training (PET), Contract Number:
DAHC 94-96-C0002, Nichols Research Corporation), we delivered this tool, known as MHSIM
(http://www.cs.rice.edu/ dsystem/mhsim), to Dr. Clay Breshears and Dr. Henry Gabb at DoD
EHRC MSRC for use by DoD scientists. :

Second, our experimentation with MAGI led to our development of a new strategy of us-
ing space-filling curves as the basis for dynamically reordering data in irregular computations to
improve spatial and temporal locality. Our work with MAGI is described in the paper “Improv-
ing Memory Hierarchy Performance for Irregular Applications” by John Mellor-Crummey, David
Whalley and Ken Kennedy (Proceedings of the ACM International Conference on Supercomputing,
Rhodes, Greece, June 1999). Dr. Hayder provided copies of this paper to Dr. David Medina, Dr.
Adam Hughes, and Dr. Ruth Pachter, all of the Air Force Research Laboratory, Wright-Patterson
Air Force Base. Dr. Pachter was also interested in this work for its potential for improving efficiency
of molecular dynamics computations.

6.1 Conference Presentations

e Ajay Sethi and Ken Kennedy. “Resource-Based Communication Placement Analysis.” Pre-
sented at the Ninth Workshop on Languages and Compilers for Parallel Compilers for Parallel
Computing (LCPC96), San Jose, California, August 1996.

65

Ajay Sethi and Ken Kennedy. “A Communication Placement Framework with United Depen-
dence and Data-Flow Analysis.” Presented at the Third International Conference on High
Performance Computing, India, December 1996. Recieived best systems paper award, Digital
Equipment (India), 1996.

John Mellor-Crummey and Vikram Adve. “Simplifying control flow in compiler-generated
parallel code.” Presented at the Tenth International Workshop on Languages and Compilers
for Parallel Computing, Minneapolis, MN, August 1997.

Gerald Roth, John Mellor-Crummey, Ken Kennedy, and R. Gregg Brickner. “Compiling
stencils in High Performance Fortran.” Presented at Supercomputing 1997: High Performance
Networking and Computing, San Jose, CA, November 1997.

Bo Lu and John Mellor-Crummey. Compiler optimization of implicit reductions for dis-
tributed memory multiprocessors. Presented at the Twelth International Parallel Processing
Symposium, Orlando, FL, March 1998.

Vikram Adve, Robert Fowler, Guohua Jin, Ken Kennedy, and John Mellor-Crummey. “Ad-
vanced Optimization Techniques for HPF” Presented at the Second Annual HPF Users’ Group
Meeting, Porto, Portugal, June 1998. ’

Vikram Adve and John Mellor-Crummey. “Using integer sets for data-parallel program anal-
ysis and optimization.” Presented at ACM SIGPLAN ’98 Conference on Programming Lan-
guage Design and Implementation, Montreal, Canada, June 1998.

Gerald Roth and Ken Kennedy. “Loop Fusion in High Performance Fortran.” Presented at
the Twelth ACM International Conference on Supercomputing, Melbourne, Australia, July
1998.

V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi. “High Performance Fortran compilation
techniques for parallelizing scientific codes.” Presented at Supercomputing 1998: High Per-
formance Computing and Networking, Orlando, FL, Nov 1998.

Collin McCurdy and John Mellor-Crummey. “An evaluation of computing paradigms for
n-body simulations on distributed memory architectures.” Presented at ACM SIGPLAN
-Symposium on Principles and Practice of Parallel Programming, Atlanta, GA, May 1999.

John Mellor-Crummey, David Whalley, and Ken Kennedy. “Improving Memory Hierarchy
Performance for Irregular Applications.” Presented at the ACM International Conference on
Supercomputing, Rhodes, Greece, June 1999.

Daniel Chavarria-Miranda and John Mellor-Crummey. “Toward Compiler Support for Scal-
able Parallelism using Multipartitioning.” Presented at the Fifth Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers, Rochester, NY, May 25-26, 2000

Kai Zhang, John Mellor-Crummey, and Robert Fowler. “Compilation and Runtime Opti-
mizations for Software Distributed Shared Memory.” Presented at the F' ifth Workshop on
Languages, Compilers, and Run-time Systems for Scalable Computers, Rochester, NY, May
25-26, 2000

Vikram Adve and Rizos Sakellariou. “Compiler synthesis of Task Graphs for Parallel Pro-
grams”, Presented at 13th Annual Workshop on Languages and Compilers for Parallel Com-
puting (LCPC’00), Yorktown Heights, NY, August 2000.

66

References

[ACD+96]

[ACG*94]

[ACIK93]

[AHW94]

[AI91]

[AJMCY98]

[AL93]

[AMC98a]

[AMC98b]

[And92]

[AWMC+95]

[Bal90]

[BCG+95]

C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel. TreadMarks: Shared memory computing on networks of worksta-
tions. IEEE Computer, 29(2):18-28, February 1996.

V. Adve, A. Carle, E. Granston, S. Hiranandani, K. Kennedy, C. Koélbel, U. Kre-
mer, J. Mellor-Crummey, S. Warren, and C. Tseng. Requirements for Data-Parallel
Programming Environments. IEEE Parallel and Distributed Technology, 2(3):48-58,
Fall 1994.

C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear algebra framework for
static HPF code distribution. In Proceedings of the Fourth Workshop on Compilers
for Parallel Computers, Delft, The Netherlands, December 1993.

S.J. Aarseth, M. Henon, and R. Wielen. A comparison of numerical methods for star
cluster dynamics. Astronomy and Astrophysics, 37:183-187, 1994.

C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In Proceedings of the
Third ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, Williamsburg, VA, April 1991.

Vikram Adve, Guohua Jin, John Mellor-Crummey, and Qing Yi. High Performance
Fortran Compilation Techniques for Parallelizing Scientific Codes. In Proceedings of
SC98: High Performance Computing and Networking, Orlando, FL, Nov 1998.

S. Amarasinghe and M. Lam. Communication optimization and code generation for
distributed memory machines. In Proceedings of the SIGPLAN ’93 Conference on
Programming Language Design and Implementation, Albuquerque, NM, June 1993.

Vikram Adve and John Mellor-Crummey. Advanced Code Generation for High Per-
formance Fortran. In Languages, Compilation Techniques and Run Time Systems for
Scalable Parallel Systems, Lecture Notes in Computer Science 1511. Springer-Verlag,
1998.

Vikram Adve and John Mellor-Crummey. Using Integer Sets for Data-Parallel Pro-
gram Analysis and Optimization. In Proceedings of the SIGPLAN ’98 Conference on
Programming Language Design and Implementation, Montreal, Canada, June 1998.

C. R. Anderson. An implementation of the fast multipole method without multipoles.
SIAM J. Sci. Stat. Comput, 13(4):923-947, July 1992.

V. Adve, J.-C. Wang, J. Mellor-Crummey, D. Reed, M. Anderson, and K. Kennedy.
An Integrated Compilation and Performance Analysis Environment for Data Parallel
Programs. In Proceedings of Supercomputing ’95, San Diego, CA, December 1995.

V. Balasundaram. A mechanism for keeping useful internal information in parallel
programming tools: The data access descriptor. Journal of Parallel and Distributed
Computing, 9(2):154-170, June 1990.

P. Banerjee, J. Chandy, M. Gupta, E. Hodges, J. Holm, A. Lain, D. Palermo, S. Ra-
maswamy, and E. Su. The Paradigm compiler for distributed-memory multicomput-
ers. IEEE Computer, 28(10):37-47, October 1995.

67

[BCK+95]

[BCZ92]

[BE95)

[BHS6]

[BHS*95)

[BMN+95]

[Bou93]

[BTCY5]

[CFR191]

[CL97]

[CooT2]
[Dar86]

[DCZ96]

R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, and M. Paleczny. A model
and compilation strategy for out-of-core data parallel programs. In Proceedings of the
Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 1-10, Santa Barbara, CA, July 1995.

S. Benkner, B. Chapman, and H. Zima. Vienna Fortran 90. In Proceedings of the
1992 Scalable High Performance Computing Conference, Williamsburg, VA, April
1992.

W. Blume and R. Eigenmann. Demand-driven symbolic range propagation. In Pro-
ceedings of the Eighth Workshop on Languages and Compilers for Parallel Computing,
pages 141-160, Columbus, OH, August 1995.

J. Barnes and P. Hut. A hierarchical o(nlogn) force calculation algorithm. Nature,
324:446-449, 1986.

D. Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Mau-
rice Yarrow. The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA
Ames Research Center, December 1995.

Z. Bozkus, L. Meadows, S. Nakamoto, V. Schuster, and M. Young. Compiling High
Performance Fortran. In Proceedings of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, pages 704-709, San Francisco, CA, February
1995.

Frangois Bourdoncle. Abstract debugging of higher-order imperative languages. In
Proceedings of the SIGPLAN ’93 Conference on Programming Language Design and
Implementation, pages 46-55, June 1993.

Preston Briggs, Linda Torczon, and Keith D. Cooper. Using conditional branches
to improve constant propagation. Technical Report CRPC-TR95533, Center for Re-
search on Parallel Computation, Rice University, April 1995.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions
on Programming Languages and Systems, 13(4):451-490, October 1991.

S. Chandra and J. Larus. Optimizing communication in HPF programs on fine-grain
distributed shared memory. In Proceedings of the 6th Symposium on the Principles
and Practice of Parallel Programming, pages 100~111, June 1997.

D. C. Cooper. Theorem proving in arithmetic without multiplication. In Machine
Intelligence, volume 7, pages 91-99, New York, 1972. American Elsevier.

E. Darnell. Special reductions in PFC. Supercomputer Software Newsletter 13, Rice
University, October 1986.

S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. An integrated compile-time/run-time
software distributed shared memory system. In Proceedings of the 7th Symposium
on Architectural Support for Programming Languages and Operating Systems, pages
186-197, October 1996.

68

[GB92]

[Ger90]

[GKHS96]

[GMS+95]

[GR87]

[Han94]

[Har77]

[Hav94)

[HBB+95] .

[Hig93]

[HJI96]

[HJJ+00]

[HIT97]

[HKT92]

M. Gupta and P. Banerjee. A methodology for high-level synthesis of communication
for multicomputers. In Proceedings of the 1992 ACM International Conference on
Supercomputing, Washington, DC, July 1992.

M. Gerndt. Updating distributed variables in local computations. Concurrency:
Practice and Ezperience, 2(3):171-193, September 1990.

S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P. Sadayappan. Compiling ar-
ray expressions for efficient execution on distributed-memory machines. Journal of
Parallel and Distributed Computing, 32(2):155-172, February 1996.

M. Gupta, S. Midkiff, E. Schonberg, V. Séshadri, D. Shields, K. Wang, W. Ching,
and T. Ngo. An HPF compiler for the IBM SP2. In Proceedings of Supercomputing
’95, San Diego, CA, December 1995.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput.
Physics, 73:325-348, 1987.

Reinhard v. Hanxleden. Compiler Support for Machine-Independent Parallelization
of Irregular Problems. PhD thesis, Dept. of Computer Science, Rice University, De-
cember 1994. Available as CRPC-TR94494-S from the Center for Research on Parallel
Computation, Rice University.

W. H. Harrison. Compiler analysis of the value ranges for variables. IEEE Transac-
tions on Software Engineering, SE-3(3):243-250, May 1977.

Paul Havlak. Interprocedural Symbolic Analysis. PhD thesis, Dept. of Computer Sci-
ence, Rice University, May 1994. Also available as CRPC-TR94451 from the Center
for Research on Parallel Computation and CS-TR94-228 from the Rice Department
of Computer Science.

J. Harris, J. Bircsak, M. R. Bolduc, J. A. Diewald, 1. Gale, N. Johnson, S. Lee, C. A.
Nelson, and C. Offner. Compiling High Performance Fortran for distributed-memory
systems. Digital Technical Journal of Digital Equipment Corp., 7(3):5-23, Fall 1995.

High Performance Fortran Forum. High Performance Fortran language specification.
Scientific Programming, 2(1-2):1-170, 1993.

Y. Charlie Hu and S. Lennart Johnsson. Implementing o(n) n-body algorithms effi-
ciently in data-parallel languages. Scientific Programming, 5(4):337-364, 1996.

Y. C. Hu, G. Jin, S. L. Johnsson, D. Kehagias, and N. Shalaby. Hpfbench: A high
performance fortran benchmark suite. ACM Transactions on Mathematical Software,
26(1):99-149, March 2000.

Y. Charlie Hu, S. Lennart Johnsson, and Shang-Hua Teng. High Performance Fortran
for highly irregular problems. In Proceedings of the Sizth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 13-24, Las Vegas, NV,
June 1997. :

S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler support for machine-
independent parallel programming in Fortran D. In J. Saltz and P. Mehrotra, ed-
itors, Languages, Compilers, and Run-Time Environments for Distributed Memory
Machines. North-Holland, Amsterdam, The Netherlands, 1992.

69

[HKT93]

[HTK98]

[Joh86]

[KA97]

[KLS+94]

[KM91]

[KMP+96]

[KNS95]

[KPROS5]

[KW95]

[LCo1]

[LCD*+96]

[LMC98]

S. Hiranandani, K. Kennedy, and C.-W. Tseng. Preliminary experiences with the
Fortran D compiler. In Proceedings of Supercomputing 93, Portland, OR, November
1993.

Hwansoo Han, Chau-Wen Tseng, and Pete Keleher. Eliminating barrier synchro-
nization for compiler-parallelized codes on software DSMs. International Journal of
Parallel Programming, 26(5):591-612, October 1998. Invited paper from LCPC’97.

Harold Johnson. Data flow analysis of ‘intractable’ imbedded system software. In
Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, pages 109—
117, 1986.

K. Kennedy and R. Allen. Advanced Compilation for Vector and Parallel Computers.
Morgan Kaufmann Publishers, San Mateo, CA, 1997.

C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Per-
formance Fortran Handbook. The MIT Press, Cambridge, MA, 1994.

C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for
distributed execution. IEEE Transactions on Parallel and Distributed Systems,
2(4):440-451, October 1991.

Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and
David Wonnacott. The Omega Library Interface Guide. Technical report, Dept. of
Computer Science, Univ. of Maryland, College Park, April 1996.

K. Kennedy, N. Nedeljkovié¢, and A. Sethi. A linear-time algorithm for computing the
memory access sequence in data-parallel programs. In Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, Santa
Barbara, CA, July 1995.

W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In Fron-
tiers ’95: The 5th Symposium on the Frontiers of Massively Parallel Computation,
McLean, VA, February 1995.

Priyadarshan Kolte and Michael Wolfe. Elimination of redundant array subscript
range checks. In Proceedings of the SIGPLAN 95 Conference on Programming Lan-
guage Design and Implementation, pages 270-278, La Jolla, CA, June 1995.

J. Li and M. Chen. Compiling communication-efficient programs for massively paral-
lel machines. IEEE Transactions on Parallel and Distributed Systems, 2(3):361-376,
July 1991.

H. Lu, A.L. Cox, S. Dwarkadas, R. Rajamony, and W. Zwaenepoel. Software dis-
tributed shared memory support for irregular applications. In Proceedings of the 6th
Symposium on the Principles and Practice of Parallel Programming, pages 48-56,
June 1996.

Bo Lu and John Mellor-Crummey. Compiler optimization of implicit reductions for
distributed memory multiprocessors. In Proceedings of the 12th International Parallel
Processing Symposium, Orlando, FL, March 1998.

70

[MCA97]

[MCA98]

[McC99]

[MCWK99]

[MMC99]

[MV389)]

[Nai92]

[NNN93]

[NQ93]

[Pug92]

[RP89]

[Sag94]

[Sch86)

[SCMB90]

John Mellor-Crummey and Vikram Adve. Simplifying control flow in compiler-
generated parallel code (extended abstract). In Proceedings of the Tenth Interna-
tional Workshop on Languages and Compilers for Parallel Computing, Lecture Notes
in Computer Science 1366, Minneapolis, MN, August 1997. Springer-Verlag. A full
version of this paper was selected for publication in a special issue of the International
Journal of Parallel Programming.

John Mellor-Crummey and Vikram Adve. Simplifying control flow in compiler-
generated parallel code. International Journal of Parallel Programming, 26(5), 1998.

Collin McCurdy. Efficient techniques for n-body simulation on distributed memory
architectures. Master’s thesis, Dept. of Computer Science, Rice University, 1999.
Forthcoming.

John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving memory hier-
archy performance for irregular applications. In Proceedings of the 13th ACM Inter-
national Conference on Supercomputing, pages 425-433, Rhodes, Greece, 1999.

Collin McCurdy and John Mellor-Crummey. An evaluation of computing paradigms
for n-body simulations on distributed memory architectures. In Proceedings of the
Seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, May 1999.

P. Mehrotra and J. Van Rosendale. Compiling high level constructs to distributed
memory architectures. In Proceedings of the 4th Conference on Hypercube Concurrent
Computers and Applications, Monterey, CA, March 1989. ‘

V. Naik. Scalability issues for a class of CFD applications. In Proceedings of the 1992
Scalable High Performance Computing Conference, Williamsburg, VA, April 1992.

N.H. Naik, V. Naik, and M. Nicoules. Parallelization of a class of implicit finite-
difference schemes in computational fluid dynamics. International Journal of High
Speed Computing, 5(1):1-50, 1993.

N. Nedeljkovic and M. J. Quinn. Data-parallel programming on a network of het-
erogeneous workstations. Concurrency: Practice and Ezperience, 5(4):257-268, June

1993.

W. Pugh. A practical algorithm for exact array dependence analysis. Communica-
tions of the ACM, 35(8):102-114, August 1992.

A. Rogers and K. Pingali. Process decomposition through locality of reference. In
Proceedings of the SIGPLAN ’89 Conference on Programming Language Design and
Implementation, Portland, OR, June 1989.

Hans Sagan. Space-Filling Curves. Springer-Verlag, New York, NY, 1994.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons,
Chichester, Great Britain, 1986.

J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time scheduling and
execution of loops on message passing machines. Journal of Parallel and Distributed
Computing, 8(4):303-312, April 1990.

71

[SKN96]

[SOGY4]

[Tar74]

[TP95]

[Tse93]

[Van93]

[VDSP96]

[WOT+95]

[WS93]

[YSM95]

[ZBG8S]

[Zha99]

T. Suganuma, H. Komatsu, and T. Nakatani. Detection and global optimization of
reduction operations for distributed parallel machines. In Proceedings of the 1996
ACM International Conference on Supercomputing, Philadelphia, PA, May 1996.

J. Stichnoth, D. O’Hallaron, and T. Gross. Generating communication for array state-
ments: Design, implementation, and evaluation. Journal of Parallel and Distributed
Computing, 21(1):150-159, April 1994.

R. E. Tarjan. Testing flow graph reducibility. Journal of Computer and System
Sciences, 9:355-365, 1974.

Peng Tu and David Padua. Gated SSA-based demand-driven symbolic analysis for
parallelizing compilers. In Proceedings of the 1995 ACM International Conference on
Supercomputing, Barcelona, Spain, July 1995.

C.-W. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory
Machines. PhD thesis, Dept. of Computer Science, Rice University, January 1993.

R. F. Van der Wijngaart. Efficient implementation of a 3-dimensional ADI method
on the iPSC/860. In Proceedings of Supercomputing 1993, pages 102-111. IEEE
Computer Society Press, 1993.

Kees van Reeuwijk, Will Denissen, Henk Sips, and Edwin Paalvast. An implementa-
tion framework for hpf distributed arrays on message-passing parallel computer sys-
tems. IEFE Transactions on Parallel and Distributed Systems, 7(8):897-914, Septem-
ber 1996.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The SPLASH-2 programs: Characterization and methodological con-
siderations. In Proceedings of the 22th International Symposium on Computer Archi-
tecture, pages 24-36, Santa Margherita Ligure, Italy, June 1995.

M. Warren and J. Salmon. A parallel hashed-octtree n-body algorithm. In Proceed-
ings of Supercomputing ’93, Portland, OR, November 1993.

J. C. Yan, S. R. Sarukkai, and P. Mehra. Performance measurement, visualization
and modeling of parallel and distributed programs using the aims toolkit. Software—
Practice and Ezperience, 25(4):429-461, April 1995.

H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1-18, 1988.

Kai Zhang. Compilation and runtime optimizations for software distributed shared
memory. Master’s thesis, Dept. of Computer Science, Rice University, October 1999.

#U.S. GOVERNMENT PRINTING OFFICE: 2001-610-055~10059

72

DISTRIBUTION LIST

addresses

JOSEPH CARDITONI
AFRL/JIFTR

523 2200K35 RD

ROME NY 13441-4505

RICE UNIVERSITY
POR OX 1392 - M3 15
HOUSTON TX 7751-1392

AFRLJIFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTIQM: DTICL-OCC

DEFENSE TELHNIUAL INFOQ CENTER

8725 JOHN J. KINGMAN RCAD, STE 0944
FT. BELVOIR, VA 22D80-42138

DEFENSE ADVANCED RESEARCH
PROJELTS AGENLY

37071 HORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

ATTN: HAN PFRIBMER

IIT RESEARCH INSTITUTE
201 MILL ST.

ROME, HY 13440

AFIT ACADEMIC LIRRARY
AFIT/LDR, 2950 P.STREET

ARTA B, BLDG 642

WRIGHT=PBATTERSON AFD OH 45433~7755

AFRL/HESC-TDC
2694 6 STREET, BLDG 190
WRIGHT-PATTERSON AFZ OH 45433-7504

aumber
o¥f copies

ATTN: SMDC IM PL

US ARMY SPACE X MISSILE DEF CMD
P.0a. BOX 1500

HUNTSVILLE AL 35807-3801

COMMANDER, CODE 4TLODOD
TECHNICAL LIBRARY, NAWC-WD
1 ADMINISTRATION CIRCLE
CHINA LAKE (A 93555-5100

CDR, US ARMY AVIATION 2 MISSILE CMD
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM=RD-0B-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY

MS P3s4

LOS ALAMDS NATIONAL LARORATORY
LO5S ALAMOS NM 27545

ATTH: D'SORAH HART
AVIATION BRANCH S5VC 122.10
FOR10A, 8M 931

BOO INDEPENDENCE AVE, SW
WASHINGTON DC 20591

AFIWC/MSY
102 HALL BLVD, STE 315
SAN ANTONIO TX 78243~-7016

ATTN: KAROLA M. YDURISON
SOFTWARE ENGINFERING INSTITUTE
4500 FIFTH AVENUE

PITTSOURGH PA 15213

USAF/AIR FORCE RESEARCH LASZORATORY
AFRL/VSOSACLIBRARY=-3LDE 1103)

5 WRIGHT DRIVE

HANSCOM AFB MA 01731-3004

ATTN: ETLEEN LADUKE/DASD
MITRE CORPORATION
202 BURLINGTON KD
HEDFORD MA 01730

DUSHIPIIDTSAIDUTD

ATTHN: FPATRICK 6. BSULLIVAN, JB.
400 nRWY NAVY DBRIVE

SUTTE 3090

ARLINGTON VA 2202

DL-3

